X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=moldyn.c;h=9f8821164dd9ae3b0eb406ec21d8c3b5cbb12709;hb=020789bbba5881e2abf58c362d0ce733696de3b3;hp=6e76bc0c5be072ad40f4fbe88b90fae57adb594a;hpb=177cf8b5cb5a3c59e2330327b628937540f123ac;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 6e76bc0..9f88211 100644 --- a/moldyn.c +++ b/moldyn.c @@ -58,6 +58,7 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { int i; t_ho_params hop; t_lj_params ljp; + t_tersoff_params tp; double s,e; memset(moldyn,0,sizeof(t_moldyn)); @@ -81,10 +82,6 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { moldyn->mwrite=atoi(argv[++i]); strncpy(moldyn->mfb,argv[++i],64); break; - case 'D': - moldyn->dwrite=atoi(argv[++i]); - strncpy(moldyn->dfb,argv[++i],64); - break; case 'S': moldyn->swrite=atoi(argv[++i]); strncpy(moldyn->sfb,argv[++i],64); @@ -187,16 +184,6 @@ int moldyn_log_init(t_moldyn *moldyn) { if(moldyn->swrite) moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; - if(moldyn->dwrite) { - moldyn->dfd=open(moldyn->dfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->dfd<0) { - perror("[moldyn] dfd open"); - return moldyn->dfd; - } - write(moldyn->dfd,moldyn,sizeof(t_moldyn)); - moldyn->lvstat|=MOLDYN_LVSTAT_DUMP; - } - if((moldyn->vwrite)&&(vis)) { moldyn->visual=vis; visual_init(vis,moldyn->vfb); @@ -245,7 +232,7 @@ int moldyn_shutdown(t_moldyn *moldyn) { return 0; } -int create_lattice(unsigned char type,int element,double mass,double lc, +int create_lattice(u8 type,int element,double mass,double lc, int a,int b,int c,t_atom **atom) { int count; @@ -457,7 +444,7 @@ int link_cell_init(t_moldyn *moldyn) { for(i=0;icells;i++) //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i]),lc->listfd); + list_init(&(lc->subcell[i])); link_cell_update(moldyn); @@ -478,13 +465,13 @@ int link_cell_update(t_moldyn *moldyn) { ny=lc->ny; nz=lc->nz; - for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { - i=atom[count].r.x/lc->x; - j=atom[count].r.y/lc->y; - k=atom[count].r.z/lc->z; + for(count=0;countcount;count++) { + i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; + j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; + k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), &(atom[count])); } @@ -500,7 +487,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { int ci,cj,ck; int nx,ny,nz; int x,y,z; - unsigned char bx,by,bz; + u8 bx,by,bz; lc=&(moldyn->lc); nx=lc->nx; @@ -510,6 +497,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { count2=27; a=nx*ny; + cell[0]=lc->subcell[i+j*nx+k*a]; for(ci=-1;ci<=1;ci++) { bx=0; @@ -532,7 +520,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { z=(z+nz)%nz; bz=1; } - if(!(x|y|z)) continue; + if(!(ci|cj|ck)) continue; if(bx|by|bz) { cell[--count2]=lc->subcell[x+y*nx+z*a]; } @@ -543,6 +531,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } + lc->dnlc=count2; + lc->countn=27; + return count2; } @@ -578,6 +569,9 @@ int moldyn_integrate(t_moldyn *moldyn) { int fd; char fb[128]; + /* initialize linked cell method */ + link_cell_init(moldyn); + /* logging & visualization */ e=moldyn->ewrite; m=moldyn->mwrite; @@ -598,11 +592,6 @@ int moldyn_integrate(t_moldyn *moldyn) { moldyn->potential_force_function(moldyn); for(i=0;itime_steps;i++) { - /* show runs */ - printf("."); - - /* neighbour list update */ - link_cell_update(moldyn); /* integration step */ moldyn->integrate(moldyn); @@ -633,18 +622,16 @@ int moldyn_integrate(t_moldyn *moldyn) { write(fd,moldyn->atom, moldyn->count*sizeof(t_atom)); } + close(fd); } } - if(d) { - if(!(i%d)) - write(moldyn->dfd,moldyn->atom, - moldyn->count*sizeof(t_atom)); - - } if(v) { - if(!(i%v)) + if(!(i%v)) { visual_atoms(moldyn->visual,i*moldyn->tau, moldyn->atom,moldyn->count); + printf("\rsteps: %d",i); + fflush(stdout); + } } } @@ -678,8 +665,16 @@ int velocity_verlet(t_moldyn *moldyn) { v3_add(&(atom[i].v),&(atom[i].v),&delta); } + /* neighbour list update */ +printf("list update ...\n"); + link_cell_update(moldyn); +printf("done\n"); + /* forces depending on chosen potential */ - moldyn->potential_force_function(moldyn); +printf("calc potential/force ...\n"); + potential_force_calc(moldyn); + //moldyn->potential_force_function(moldyn); +printf("done\n"); for(i=0;ipot_params; + count=moldyn->count; atom=moldyn->atom; lc=&(moldyn->lc); - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; - count=moldyn->count; - u=0.0; + /* reset energy */ + moldyn->energy=0.0; + for(i=0;ix; - nj=atom[i].r.y/lc->y; - nk=atom[i].r.z/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + + /* reset force */ + v3_zero(&(atom[i].f)); - /* neighbours not doing boundary condition overflow */ - for(j=1;jstart!=NULL) { + /* single particle potential/force */ + if(atom[i].attr&ATOM_ATTR_1BP) + moldyn->pf_func1b(moldyn,&(atom[i])); - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* 2 body pair potential/force */ + if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + + link_cell_neighbour_index(moldyn, + (atom[i].r.x+moldyn->dim.x/2)/lc->x, + (atom[i].r.y+moldyn->dim.y/2)/lc->y, + (atom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour); - } - } + countn=lc->countn; + dnlc=lc->dnlc; - /* neighbours due to boundary conditions */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { + for(j=0;jcurrent->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + this=&(neighbour[j]); + list_reset(this); + + if(this->start==NULL) + continue; + + bc=(jcurrent->data; + + if(btom==&(atom[i])) + continue; + + if((btom->attr&ATOM_ATTR_2BP)& + (atom[i].attr&ATOM_ATTR_2BP)) + moldyn->pf_func2b(moldyn, + &(atom[i]), + btom, + bc); + /* 3 body potential/force */ + + if(!(atom[i].attr&ATOM_ATTR_3BP)|| + !(btom->attr&ATOM_ATTR_3BP)) + continue; + + link_cell_neighbour_index(moldyn, + (btom->r.x+moldyn->dim.x/2)/lc->x, + (btom->r.y+moldyn->dim.y/2)/lc->y, + (btom->r.z+moldyn->dim.z/2)/lc->z, + neighbourk); + + for(k=0;kcountn;k++) { + + thisk=&(neighbourk[k]); + list_reset(thisk); + + if(thisk->start==NULL) + continue; + + bck=(kdnlc)?0:1; + + do { + + ktom=thisk->current->data; + + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; + + if(ktom==btom) + continue; + + if(ktom==&(atom[i])) + continue; + + moldyn->pf_func3b(moldyn,&(atom[i]),btom,ktom,bck); + + } while(list_next(thisk)!=\ + L_NO_NEXT_ELEMENT); + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); } } } - moldyn->energy=u; + return 0; +} + +/* + * periodic boundayr checking + */ + +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; + + if(moldyn->MOLDYN_ATTR_PBX) + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + if(moldyn->MOLDYN_ATTR_PBY) + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + if(moldyn->MOLDYN_ATTR_PBZ) + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + + return 0; +} + + +/* + * example potentials + */ + +/* harmonic oscillator potential and force */ + +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { + + t_ho_params *params; + t_3dvec force,distance; + double d; + double sc,equi_dist; + + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; + + v3_sub(&distance,&(ai->r),&(aj->r); + + v3_per_bound(&distance,&(moldyn->dim)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); + } return 0; } /* lennard jones potential & force for one sort of atoms */ -int lennard_jones(t_moldyn *moldyn) { +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; - t_atom *atom,*btom; - t_linkcell *lc; - t_list *this,neighbour[27]; - int i,j,c; - int count; t_3dvec force,distance; double d,h1,h2,u; double eps,sig6,sig12; - int ni,nj,nk; params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; - u=0.0; - for(i=0;ix; - nj=atom[i].r.y/lc->y; - nk=atom[i].r.z/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=1.0/v3_absolute_square(&distance); /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f),&force); + v3_sub(&distance,&(ai->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(ai->f),&(aj->f),&force); + } + + return 0; +} + +/* + * tersoff potential & force for 2 sorts of atoms + */ + +/* tersoff 2 body part */ + +int tersoff_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_tersoff_params *params; + t_3dvec dist_ij; + double d_ij; + + params=moldyn->pot_params; + + /* + * we need: f_c, df_c, f_r, df_r + * + * therefore we need: R, S + */ + + v3_sub(&dist_ij,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&dist_ij); + + if(ai->bnum==aj->bnum) { + S=params->S[ai->bnum]; + R=params->R[ai->bnum]; + } + else { + S=params->Smixed; + R=params->Rmixed; + } + + d_ij=v3_norm(&dist_ij); + + if(d_ij<=S) { + f_r=A*exp(-lamda*d_ij); + df_r=-lambda*f_r/d_ij; + if(d_ijf),&(ai->f),&force); + } + moldyn->energy+=(f_r*f_c); + } + + return 0; +} + +/* tersoff 3 body part */ + +int tersoff(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc,u8 bck) { + + t_tersoff_params *params; + t_3dvec dist_ij; + double d_ij; + + params=moldyn->pot_params; + + /* 2 body part of the tersoff potential */ + + v3_sub(&dist_ij,&(ai->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&dist_ij); + d_ij=v3_norm(&dist_ij); + if(d_ij<=S) { + + /* determine the tersoff parameters */ + if(atom[i].element!=btom->element) { + S=sqrt(TERSOFF_S[e1]*TERSOFF_S[e2]); + R=R_m; + A=; + lambda=; + B=; + mu=; + chi=; + beta=; + betaN=; + + if(d_ij<=R) { + df_r=-lambda*A*exp(-lambda*d_ij)/d_ij; + v3_scale(&force,&dist_ij,df_r); + v3_add(&(atom[i].f),&(atom[i].f), + &force); + } + else { + s_r=S-R; + arg1=PI*(d_ij-R)/s_r; + f_c=0.5+0.5*cos(arg1); + df_c=-0.5*sin(arg1)*(PI/(s_r*d_ij)); + f_r=A*exp(-lambda*d_ij); + df_r=-lambda*f_r/d_ij; + scale=df_c*f_r+df_r*f_c; + v3_scale(&force,&dist_ij,scale); + v3_add(&(atom[i].f),&(atom[i].f), + &force); + } + } + else + continue; + + + /* end 2 body stuff */ + + /* determine cell neighbours of btom */ + ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; + kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; + kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; + ck=link_cell_neighbour_index(moldyn,ki,kj,kk, + neighbourk); + + /* go for zeta - 3 body stuff! */ + zeta=0.0; + d_ij2=d_ij*d_ij; + + /* cell of btom */ + thisk=&(neighbourk[0]); + list_reset(thisk); + do { + ktom=thisk->current->data; + if(ktom==btom) + continue; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (1) */ + + v3_sub(&dist_ik,ktom,&(atom[i])); + d_ik=v3_norm(&dist_ik); + if(d_ik<=Sik) { + + Rik=; + Sik=; + Aik=; + lambda_ik=; + Bik=; + mu_ik=; + omega_ik=; + c_i=; + d_i=; + h_i=; + + + if(d_ik<=Rik) { + f_cik=1.0; + df_cik=0.0; + } + else { + sik_rik=Sik-Rik; + arg1ik=PI*(d_ik-Rik)/sik_rik; + f_cik=0.5+0.5*cos(arg1ik); + df_cik=-0.5*sin(arg1ik)* \ + (PI/(sik_rik*d_ik)); + f_rik=Aik*exp(-lambda_ik*d_ik); + f_aik=-Bik*exp(-mu_ik*d_ik); + } + + v3_sub(&distance_jk,ktom,btom); + cos_theta=(d_ij2+d_ik*d_ik-d_jk*d_jk)/\ + (2*d_ij*d_ik); + sin_theta=sqrt(1.0/\ + (cos_theta*cos_theta)); + theta=arccos(cos_theta); + + + } + else + continue; + + /* end 3 body stuff (1) */ + + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + /* direct neighbours of btom cell */ + for(k=1;kstart!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (2) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + } + } + + /* indirect neighbours of btom cell */ + for(k=ck;k<27;k++) { + thisk=&(neighbourk[k]); + list_reset(thisk); + if(thisk->start!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + } + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); - /* neighbours not doing boundary condition overflow */ + /* + * direct neighbour cells of atom i + */ for(j=1;jstart!=NULL) { do { btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); + + /* 2 body stuff */ + + + /* determine cell neighbours of btom */ + ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; + kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; + kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; + ck=link_cell_neighbour_index(moldyn,ki,kj,kk, + neighbourk); + + /* cell of btom */ + thisk=&(neighbourk[0]); + list_reset(thisk); + do { + ktom=thisk->current->data; + if(ktom==btom) + continue; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (1) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + /* direct neighbours of btom cell */ + for(k=1;kstart!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (2) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + } + } + + /* indirect neighbours of btom cell */ + for(k=ck;k<27;k++) { + thisk=&(neighbourk[k]); + list_reset(thisk); + if(thisk->start!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (3) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + } + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); - + } } - /* neighbours due to boundary conditions */ + /* + * indirect neighbour cells of atom i + */ for(j=c;j<27;j++) { this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ + list_reset(this); if(this->start!=NULL) { do { btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); + + /* 2 body stuff */ + + + /* determine cell neighbours of btom */ + ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; + kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; + kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; + ck=link_cell_neighbour_index(moldyn,ki,kj,kk, + neighbourk); + + /* cell of btom */ + thisk=&(neighbourk[0]); + list_reset(thisk); + do { + ktom=thisk->current->data; + if(ktom==btom) + continue; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (1) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + /* direct neighbours of btom cell */ + for(k=1;kstart!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (2) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + } + } + + /* indirect neighbours of btom cell */ + for(k=ck;k<27;k++) { + thisk=&(neighbourk[k]); + list_reset(thisk); + if(thisk->start!=NULL) { + + do { + ktom=thisk->current->data; + if(ktom==&(atom[i])) + continue; + + /* 3 body stuff (3) */ + + } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + + } + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); } } + } - moldyn->energy=u; - + moldyn->energy=0.5*u; + return 0; }