X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=b1483e68751a54f3ca6d0a078eaaf58af853b0b9;hb=e8c736106da8aa48a4e3794d3e2384358f08d8d6;hp=04192521224a543fbf628c5741fdbf4d2ac86d69;hpb=162206abf206f18e6d23e452b95a903bd2aafae1;p=lectures%2Flatex.git diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 0419252..b1483e6 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -675,52 +675,298 @@ POTIM = 0.1 \end{itemize} \vspace*{0.2cm} \underline{Param 2}\\ - After talking to the pros! Used for 'large' simulations. + After talking to the pros! \begin{itemize} \item $\Gamma$-point only \item $E_{\text{cut-off}}=xyz\text{ eV}$ \item Gaussian smearing ($\sigma=0.05$) \item Use symmetry - \item Real space projection (Auto, Medium) + \item Real space projection (Auto, Medium) for 'large' simulations \end{itemize} \vspace*{0.2cm} {\color{blue} In both parameter sets the ultra soft pseudo potential method - as well as the projector augmented wave method is used! + as well as the projector augmented wave method is used with both, + the LDA and GGA exchange correlation potential! } \end{slide} \begin{slide} + \footnotesize + {\large\bf Properties of Si, C and SiC using the new parameters\\ } - $2\times 2\times 2$ Type 2 supercell, Param 1\\[0.2cm] + $2\times 2\times 2$ Type 2 supercell, Param 1, LDA, US PP\\[0.2cm] \begin{tabular}{|l|l|l|l|} \hline & c-Si & c-C (diamond) & 3C-SiC \\ \hline - Lattice constant [\AA] & 5.389 & 3.527 & \\ - Expt. [\AA] & 5.429 & 3.567 & \\ - Error [\%] & {\color{green}0.7} & 1.1 & \\ + Lattice constant [\AA] & 5.389 & 3.527 & 4.319 \\ + Expt. [\AA] & 5.429 & 3.567 & 4.359 \\ + Error [\%] & {\color{green}0.7} & {\color{green}1.1} & {\color{green}0.9} \\ \hline - Cohesive energy [eV] & -4.674 & -8.812 & \\ - Expt. [eV] & -4.63 & -7.374 & \\ - Error [\%] & {\color{green}1.0} & {\color{red}19.5} & \\ + Cohesive energy [eV] & -5.277 & -8.812 & -7.318 \\ + Expt. [eV] & -4.63 & -7.374 & -6.340 \\ + Error [\%] & {\color{red}14.0} & {\color{red}19.5} & {\color{red}15.4} \\ \hline \end{tabular}\\ + \begin{minipage}{10cm} + $2\times 2\times 2$ Type 2 supercell, 3C-SiC, Param 1\\[0.2cm] + \begin{tabular}{|l|l|l|l|} + \hline + & {\color{magenta}US PP, GGA} & PAW, LDA & PAW, GGA \\ + \hline + Lattice constant [\AA] & 4.370 & 4.330 & 4.379 \\ + Error [\%] & {\color{green}0.3} & {\color{green}0.7} & {\color{green}0.5} \\ + \hline + Cohesive energy [eV] & -6.426 & -7.371 & -6.491 \\ + Error [\%] & {\color{green}1.4} & {\color{red}16.3} & {\color{green}2.4} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{3cm} + US PP, GGA\\[0.2cm] + \begin{tabular}{|l|l|} + \hline + c-Si & c-C \\ + \hline + 5.455 & 3.567 \\ + {\color{green}0.5} & {\color{green}0.01} \\ + \hline + -4.591 & -7.703 \\ + {\color{green}0.8} & {\color{orange}4.5} \\ + \hline + \end{tabular} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + Energy cut-off for $\Gamma$-point only caclulations + } + + $2\times 2\times 2$ Type 2 supercell, Param 2, US PP, LDA, 3C-SiC\\[0.2cm] + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff.ps} + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff_lc.ps}\\ + $\Rightarrow$ Use 300 eV as energy cut-off?\\[0.2cm] + $2\times 2\times 2$ Type 2 supercell, Param 2, 300 eV, US PP, GGA\\[0.2cm] + \small + \begin{minipage}{10cm} + \begin{tabular}{|l|l|l|l|} + \hline + & c-Si & c-C (diamond) & 3C-SiC \\ + \hline + Lattice constant [\AA] & 5.470 & 3.569 & 4.364 \\ + Error [\%] & {\color{green}0.8} & {\color{green}0.1} & {\color{green}0.1} \\ + \hline + Cohesive energy [eV] & -4.488 & -7.612 & -6.359 \\ + Error [\%] & {\color{orange}3.1} & {\color{orange}3.2} & {\color{green}0.3} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{2cm} + {\LARGE + ${\color{green}\surd}$ + } + \end{minipage} + \end{slide} \begin{slide} {\large\bf - C interstitial in c-Si + C 100 interstitial migration along 110 in c-Si (Albe potential) } + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=4cm]{c_100_mig/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{0.8cm} + $\Delta x=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta y=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta z=0.325\text{ \AA}$\\ + \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=4cm]{c_100_mig/final.eps}\\ + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Fix border atoms of the simulation cell + \item Constraints and displacement of the C atom: + \begin{itemize} + \item along {\color{green}110 direction}\\ + displaced by {\color{green} $\frac{1}{10}(\Delta x,\Delta y)$} + \item C atom {\color{red}entirely fixed in position}\\ + displaced by + {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$} + \end{itemize} + \item Berendsen thermostat applied + \end{itemize} + {\bf\color{blue}Expected configuration not obtained!} + \end{minipage} + \begin{minipage}{0.5cm} + \hfill + \end{minipage} + \begin{minipage}{6cm} + \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential) + } + + \footnotesize + + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_50.eps} + \begin{center} + 50 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_80.eps} + \begin{center} + 80 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_90.eps} + \begin{center} + 90 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_99.eps} + \begin{center} + 100 \% + \end{center} + \end{minipage} + + Open questions ... + \begin{enumerate} + \item Why is the expected configuration not obtained? + \item How to find a migration path preceding to the expected configuration? + \end{enumerate} + + Answers ... + \begin{enumerate} + \item Simple: it is not the right migration path! + \begin{itemize} + \item (Surrounding) atoms settle into a local minimum configuration + \item A possibly existing more favorable configuration is not achieved + \end{itemize} + \item \begin{itemize} + \item Search global minimum in each step (by simulated annealing)\\ + {\color{red}But:} + Loss of the correct energy needed for migration + \item Smaller displacements\\ + A more favorable configuration might be achieved + possibly preceding to the expected configuration + \end{itemize} + \end{enumerate} +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential)\\ + } + + Displacement step size decreased to + $\frac{1}{100} (\Delta x,\Delta y)$\\[0.2cm] + + \begin{minipage}{7.5cm} + Result: (Video \href{../video/c_in_si_smig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_albe.avi}{$\rhd_{\text{remote url}}$}) + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} + {\color{red} + Obviously: overestimated bond strength + } + \end{minipage} + \begin{minipage}{5cm} + \includegraphics[width=6cm]{c_100_110smig_01_albe.ps} + \end{minipage}\\[0.4cm] + New approach to find the migration path:\\ + {\color{blue} + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix! + } + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (Albe potential)\\ + } + + {\color{blue}New approach:}\\ + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix!\\ + {\color{red}Problem:}\\ + Too high forces due to the small distance of the C atom to the Si + atom sharing the lattice site.\\ + {\color{green}Solution:} + Slightly displace the Si atom\\ + + \begin{minipage}{6.5cm} + Result: + (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$})\\ + \includegraphics[width=6cm]{c_100_110pmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Jump in energy (25 and 75 \%) corresponds to the abrupt + structural change (as seen in the video) + \item Due to the abrupt changes in structure and energy + this is {\color{red}not} the correct migration path and energy!?! + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf + C 100 interstitial migration along 110 in c-Si (VASP) + } + + \small + \vspace*{1cm} + \ldots simulations running! + \vspace*{1cm} + + \begin{minipage}{5cm} + + \end{minipage} + \begin{minipage}{7cm} + + \end{minipage} + + \end{slide} \end{document}