X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=posic%2Fthesis%2Fbasics.tex;h=249614ae173c0d53adf87671ee8925e332f4dec6;hb=0d3acfac2b23ed5b37c86a77118a7f467f48c0e8;hp=d80a4d03d366e3a0d8ecb54534773465cf5abdf3;hpb=6ff9691bfd15ba165c609de924ae7f12889776f4;p=lectures%2Flatex.git diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex index d80a4d0..249614a 100644 --- a/posic/thesis/basics.tex +++ b/posic/thesis/basics.tex @@ -558,15 +558,15 @@ However, moving an ion, i.e.\ altering its position, changes the wave functions Writing down the derivative of the total energy $E$ with respect to the position $\vec{R}_i$ of ion $i$ \begin{equation} \frac{dE}{d\vec{R_i}}= - \sum_j \Phi_j^* \frac{\partial H}{\partial \vec{R}_i} \Phi_j -+\sum_j \frac{\partial \Phi_j^*}{\partial \vec{R}_i} H \Phi_j -+\sum_j \Phi_j^* H \frac{\partial \Phi_j}{\partial \vec{R}_i} + \sum_j \langle \Phi_j | \frac{\partial H}{\partial\vec{R}_i} | \Phi_j \rangle ++\sum_j \langle \frac{\partial \Phi_j}{\partial\vec{R}_i} | H \Phi_j \rangle ++\sum_j \langle \Phi_j H | \frac{\partial \Phi_j}{\partial \vec{R}_i} \rangle \text{ ,} \end{equation} indeed reveals a contribution to the change in total energy due to the change of the wave functions $\Phi_j$. However, provided that the $\Phi_j$ are eigenstates of $H$, it is easy to show that the last two terms cancel each other and in the special case of $H=T+V$ the force is given by \begin{equation} -\vec{F}_i=-\sum_j \Phi_j^*\Phi_j\frac{\partial V}{\partial \vec{R}_i} +\vec{F}_i=-\sum_j \langle \Phi_j | \Phi_j\frac{\partial V}{\partial \vec{R}_i} \rangle \text{ .} \end{equation} This is called the Hellmann-Feynman theorem \cite{feynman39}, which enables the calculation of forces, called the Hellmann-Feynman forces, acting on the nuclei for a given configuration, without the need for evaluating computationally costly energy maps.