in the $3\times 3\times 3$ Type 2 supercell
}
+ \begin{minipage}{6cm}
+ Method:
+ \begin{itemize}
+ \item Starting configuration:\\
+ C bond centered
+ \item CRT towards \hkl<0 0 -1> configuration
+ \item Spin polarized calculations
+ \end{itemize}
+ Results:\\
+ Video \href{../video/c_im_00-1_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_im_00-1_vasp.avi}{$\rhd_{\text{remote url}}$}
+ \begin{itemize}
+ \item Still abrupt changes in configuration and energy
+ \item Migration barrier $>$ 1 eV
+ \item I bet it's not reversible!
+ \item {\color{red}Final run in progress}
+ \end{itemize}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \includegraphics[width=6cm]{c_im_001_mig_vasp.ps}
+ \includegraphics[width=6cm]{c_im_001_mig_rc_vasp.ps}
+ \end{minipage}
+
\end{slide}
\begin{slide}
}
\begin{minipage}{3.2cm}
- \underline{C tetrahedral}\\
- Relaxes into \hkl<0 0 1> configuration\\[0.2cm]
- \underline{C hexagonal}\\
- Relaxes into \hkl<0 0 1> configuration\\[0.4cm]
+ \underline{C bond centered}
+ \begin{itemize}
+ \item $E_{\text{f}}=4.10\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{c_pd_vasp/bc_2333.eps}
\underline{\hkl<1 1 0> interstitial}
\begin{itemize}
\item $E_{\text{f}}=3.60\text{ eV}$
\end{itemize}
\includegraphics[width=3cm]{c_pd_vasp/110_2333.eps}
\end{minipage}
- \begin{minipage}{9cm}
+ \begin{minipage}{4.5cm}
\begin{center}
\includegraphics[height=8cm]{c_pd_vasp/110_2333_ksl.ps}
{\scriptsize \hkl<1 1 0> interstitial}
\end{center}
\end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{c_pd_vasp/bc_2333_ksl.ps}
+ {\scriptsize C bond centered}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+ Carbon point defects in silicon
+ }
+
+ The hexagonal and tetrahedral C configurations both relax into the
+ \hkl<0 0 1> interstitial configuration!
\end{slide}
Combination of defects
}
+ \small
+
+ Initial C \hkl<0 0 -1> insterstital at: $\frac{1}{4}\hkl<1 1 1>$
+
\begin{tabular}{|l|l|l|l|l|l|}
\hline
& 2 & 3 & 4 & 5 & 6 \\
\hline
-\hkl<0 0 -1> & 6.23 & 5.16 & 6.23 & 6.35 & 4.65\\
+C \hkl<0 0 -1> & 6.23/-0.08 & 5.16/-1.15 & 6.23/-0.08 & 6.35 & 4.65\\
\hline
-\hkl<0 0 1> & 6.64 & 6.31 & 4.26 & 6.57 & 4.78 \\
+C \hkl<0 0 1> & 6.64/0.34 & 6.31/0.01 & 4.26 & 6.57 & 4.78 \\
\hline
-\hkl<1 0 0> & 4.06 & 6.13 & 6.21 & 6.03 & 4.93 \\
+C \hkl<1 0 0> & 4.06/-2.25 & 6.13/-0.17 & 6.21 & 6.03 & 4.93 \\
\hline
-\hkl<-1 0 0> & \hkl<0 -1 0> & 4.41 & 4.06 & 6.19 & 4.43 \\
+C \hkl<-1 0 0> & \hkl<0 -1 0> & 4.41/-1.90 & 4.06 & 6.19 & 4.43 \\
\hline
-\hkl<0 1 0> & \hkl<1 0 0> & 5.95 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\
+C \hkl<0 1 0> & \hkl<1 0 0> & 5.95/-0.36 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\
\hline
-\hkl<0 -1 0> & 3.92 & 4.15 & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\
+C \hkl<0 -1 0> & 3.92/-2.39 & 4.15/-2.16 & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\
\hline
-Vacancy & 1.39 & 6.19 & 3.65 & 6.24 & 6.50 \\
+Vacancy & 1.39/-5.39 ($\rightarrow\text{ C}_{\text{S}}$) & 6.19/-0.59 & 3.65 & 6.24 & 6.50 \\
\hline
- \end{tabular}
+ \end{tabular}\\[0.2cm]
+ Energies: $x/y$\\
+ $x$: Defect formation energy of the complex\\
+ $y$:
+ $E_{\text{f}}^{\text{defect combination}}-
+ E_{\text{f}}^{\text{isolated C \hkl<0 0 -1>}}-
+ E_{\text{f}}^{\text{isolated 2nd defect}}
+ $\\
+ That is: If $y<0$ $\rightarrow$ favored compared to far-off isolated defects
\end{slide}
\small
- Supercell size: $2$ - $2000 \cdot 10^{-21}\text{ cm}^3$
+ Supercell size: $2$ -- $2000 \cdot 10^{-21}\text{ cm}^3$
\underline{After crystal growth}
\begin{itemize}