\begin{enumerate}
\item $U=IR \Rightarrow EL=jA\rho\frac{L}{A}
\Rightarrow E=j\rho$
- \item distance: $v\,dt$\\
- number of electrons crossing $A$: $n(v\,dt)A$\\
+ \item \begin{itemize}
+ \item distance: $v\,dt$
+ \item number of electrons crossing $A$: $n(v\,dt)A$
+ \end{itemize}
$\Rightarrow$ $j=\frac{I}{A}=\frac{dQ/dt}{A}=\frac{-e\,n(v\,dt)A/dt}{A}
=-nev$
\item \begin{itemize}
\item $j=\left(\frac{ne^2\tau}{m}\right)E$\\
\item $j=\sigma E \Rightarrow \sigma=\frac{ne^2\tau}{m}$
\end{itemize}
- \item Energy transfer: $\frac{m}{2}v_{drift}^2$,
- $\qquad v_{drift}$:
- end drift velocity of the accelerated electron\\
- $v_{drift} \ne v_{average}$
-
-
+ \item \begin{itemize}
+ \item Energy transfer: $\frac{m}{2}v_{drift}^2$,
+ $\quad v_{drift}$:
+ final drift velocity of the accelerated electron
+ \item $v_{drift}=-\frac{eE}{m}t_0$, $\quad t_0$:
+ free flight time (no collision) of the electron
+ \item $v_{average}=\frac{1}{t_0}\int_{0}^{t_0} v(t) dt
+ =-\frac{eE}{m}\frac{1}{t_0}[\frac{t^2}{2}]_{0}^{t_0}
+ =-\frac{eE}{m}\frac{t_0}{2}=:-\frac{eE}{m}\tau$,
+ $\qquad t_0=2\tau$
+ \item Each of the $n$ electrons per unit volume
+ transfer the kinetic energy $\frac{1}{2}mv^2_{drift}$
+ once per $t_0$ to the lattice
+ \end{itemize}
+ \[
+ \Rightarrow \frac{P}{V}=\frac{E_{kin}}{Vt_0}
+ =\frac{n\frac{1}{2}m\frac{e^2E^2}{m^2}t_0^2}{t_0}
+ =n\frac{1}{2}\frac{e^2E^2}{m}2\tau
+ =\sigma E^2=jE=j^2\rho=\frac{I^2}{A^2}\frac{A}{L}R
+ =\frac{I^2R}{V}
+ \]
+ \[
+ \Rightarrow P=I^2R \textrm{ (Joule heating)}
+ \]
\end{enumerate}
\end{document}