\begin{itemize}
\item Calculation of cohesive energies for different lattice constants
\item No ionic update
- \item tetrahedron method with Blöchl corrections for
+ \item Tetrahedron method with Blöchl corrections for
the partial occupancies $f_{nk}$
\item Supercell 3 (8 atoms, 4 primitive cells)
\end{itemize}
\begin{itemize}
\item Calculation of cohesive energies for different lattice constants
\item No ionic update
- \item tetrahedron method with Blöchl corrections for
+ \item Tetrahedron method with Blöchl corrections for
the partial occupancies $f_{nk}$
\end{itemize}
\vspace*{0.6cm}
\end{slide}
+\begin{slide}
+
+ {\large\bf
+ Used types of supercells\\
+ }
+
+ \footnotesize
+
+ \begin{minipage}{4.3cm}
+ \includegraphics[width=4cm]{sc_type0.eps}\\[0.3cm]
+ \underline{Type 0}\\[0.2cm]
+ Basis: fcc\\
+ $x_1=(0.5,0.5,0)$\\
+ $x_2=(0,0.5,0.5)$\\
+ $x_3=(0.5,0,0.5)$\\
+ 1 primitive cell / 2 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+ \includegraphics[width=4cm]{sc_type1.eps}\\[0.3cm]
+ \underline{Type 1}\\[0.2cm]
+ Basis:\\
+ $x_1=(0.5,-0.5,0)$\\
+ $x_2=(0.5,0.5,0)$\\
+ $x_3=(0,0,1)$\\
+ 2 primitive cells / 4 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+ \includegraphics[width=4cm]{sc_type2.eps}\\[0.3cm]
+ \underline{Type 2}\\[0.2cm]
+ Basis: sc\\
+ $x_1=(1,0,0)$\\
+ $x_2=(0,1,0)$\\
+ $x_3=(0,0,1)$\\
+ 4 primitive cells / 8 atoms
+ \end{minipage}\\[0.4cm]
+
+ {\bf\color{blue}
+ In the following these types of supercells are used and
+ are possibly scaled by integers in the different directions!
+ }
+
+\end{slide}
+
\begin{slide}
{\large\bf
-E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
\]
}
-
- \begin{center}
+ Influence of supercell size\\
+ \begin{minipage}{8cm}
\includegraphics[width=7.0cm]{si_self_int.ps}
- \end{center}
+ \end{minipage}
+ \begin{minipage}{5cm}
+ $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Questions so far ...\\
+ }
+
+ What configuration to chose for C in Si simulations?
+ \begin{itemize}
+ \item Switch to another method for the XC approximation (GGA, PAW)?
+ \item Reasonable cut-off energy
+ \item Switch off symmetry? (especially for defect simulations)
+ \item $k$-points
+ (Monkhorst? $\Gamma$-point only if cell is large enough?)
+ \item Switch to tetrahedron method or Gaussian smearing ($\sigma$?)
+ \item Size and type of supercell
+ \begin{itemize}
+ \item connected to choice of $k$-point mesh?
+ \item hence also connected to choice of smearing method?
+ \item constraints can only be applied to the lattice vectors!
+ \end{itemize}
+ \item \ldots
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Review (so far) ...\\
+ }
+
+
+
\end{slide}