L_+S_-\ket{l,m,+}=L_+\ket{l,m}S_-\ket{+}=
\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-}
\end{equation}
+ Moreover, this part only acts on magnetic quantum numbers
+ $m=-l,\ldots,l-1$ and updates quantum numbers $m=-l+1,\ldots,l$.
\item \underline{$L_-S_+$}:
Updates spin up component and only acts on spin down component
\begin{equation}
-L_+S_-\ket{l,m,-}=L_+\ket{l,m}S_-\ket{+}=
-\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-}
+L_-S_+\ket{l,m,-}=L_+\ket{l,m}S_+\ket{-}=
+\sqrt{(l+m)(l-m+1)}\hbar\ket{l,m-1}\hbar\ket{+}
\end{equation}
+ Moreover, this part only acts on magnetic quantum numbers
+ $m=-l+1,\ldots,l$ and updates quantum numbers $m=-l,\ldots,l-1$.
\item \underline{$L_zS_z$}: Acts on both and updates both spinor components
\begin{equation}
L_zS_z\ket{l,m,\pm}=L_z\ket{l,m}S_z\ket{\pm}=
\pm\frac{1}{2}m\hbar^2\ket{l,m,\pm}
\end{equation}
+ It acts on all magnetic quantum numbers and updates all of them.
\end{enumerate}
+Please note that the $\ket{l,m,\pm}$ are not eigenfunctions of the two combinations of ladder operators, i.e.\ the $\ket{l,m,\pm}$ do not diagonalize the spin-orbit part of the Hamiltonian.
+(Does this constitute a problem?)
+
\subsubsection{Excursus: Real space representation within an iterative treatment}