\item
\end{enumerate}
-\section{'Density of state mass' of electrons and holes in silicon}
+\section{'Density of state mass' of holes in silicon}
\begin{enumerate}
\item $D_v(E)=\frac{1}{2\pi^2}(\frac{2}{\hbar^2})^{3/2}
(m_{pl}^{3/2}+m_{ph}^{3/2})(E_v-E)^{1/2}$
- \item
+ \item $D_v(E)=\frac{1}{2\pi^2}(\frac{2m_p}{\hbar^2})^{3/2}
+ (E_v-E)^{1/2}$, with
+ $m_p=(m_{vh}^{3/2}+m_{vl}^{3/2})^{2/3}$\\
+ $m_{vh}=0.49 \, m_e$, $m_{vl}=0.16 \, m_e$
+ $\Rightarrow$
+ $m_p=\ldots=0.55 \, m_e$
\end{enumerate}
-\begin{center}
-{\Large\bf
- Merry Christmas\\
- \&\\
- Happy New Year!}
-\end{center}
+Remarks:
+\begin{itemize}
+ \item Operand for calculating the density of states using the
+ standard density of states expression near the band edge.
+ \item No such charge carriers which have the effective mass $m_p$
+ exist in silicon.
+ Concerning transport properties the effective masses have to be
+ treated separately.
+\end{itemize}
\end{document}