f_R(r_{ij}) & = & A_{ij} \exp (- \lambda_{ij} r_{ij} ) \\
f_A(r_{ij}) & = & -B_{ij} \exp (- \mu_{ij} r_{ij} )
\end{eqnarray}
-The function $f_C$ is a cutoff function to limit the range of interaction to nearest neighbors.
+The function $f_C$ is a cut-off function to limit the range of interaction to nearest neighbors.
It is designed to have a smooth transition of the potential at distances $R_{ij}$ and $S_{ij}$.
\begin{equation}
f_C(r_{ij}) = \left\{
\label{eq:basics:fc}
\end{equation}
As discussed above, $b_{ij}$ represents a measure of the bond order, monotonously decreasing with the coordination of atoms $i$ and $j$.
-It is of the form:
+It is of the form
\begin{eqnarray}
b_{ij} & = & \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i} \\
\zeta_{ij} & = & \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} g(\theta_{ijk}) \\