\[
w=-\frac{1}{V}\frac{\partial}{\partial \beta} ln \sum_i \exp(-\beta E_i).
\]
+ \item \begin{itemize}
+ \item Total energy contribution of a particular normal mode:
+ $(n_{{\bf k}s} + \frac{1}{2})\hbar\omega_s({\bf k})$
+ with $n_{{\bf k}s}=0,1,2,\ldots$
+ \item A state of the crystal is specified by the excitation numbers
+ of the 3N normal modes.
+ \item The total energy is the sum of the energies of the individual
+ normal modes:\\
+ $E=\sum_{{\bf k}s}(n_{{\bf k}s}+
+ \frac{1}{2})\hbar\omega_s({\bf k})$
+ \end{itemize}
+ \begin{eqnarray}
+ \Rightarrow
+ w&=&-\frac{1}{V}\frac{\partial}{\partial \beta} ln\left(
+ \prod_{{\bf k}s}(\exp(-\beta\hbar\omega_s({\bf k})/2)+
+ \exp(-3\beta\hbar\omega_s({\bf k})/2)+
+ \exp(-5\beta\hbar\omega_s({\bf k})/2)+
+ \ldots)
+ \right)\nonumber\\
+ &=&-\frac{1}{V}\frac{\partial}{\partial \beta} ln \prod_{{\bf k}s}
+ \frac{\exp(-\beta\hbar\omega_s({\bf k})/2)}
+ {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber
+ \end{eqnarray}
+
\item Evaluate the expression of the energy density.
{\bf Hint:}
The energy levels of a harmonic crystal of N ions