=\ldots=5.97 \cdot 10^{-28} \, kg\frac{m}{s}$
\end{itemize}
\item Phonon momentum necessary for transition:\\
- $p=\hbar \cdot \Delta k=\hbar \cdot 0.85 \, \frac{2\pi}{a}
+ $\Delta p=\hbar \cdot \Delta k=\hbar \cdot 0.85 \, \frac{2\pi}{a}
=\frac{0.85 \, h}{a}=\ldots=1.04 \cdot 10^{-24} \, kg\frac{m}{s}$\\
$\rightarrow$ Phonon momentum 3 orders of magnitude below
the momentum necessary for transition!
- \item
+ \item \begin{itemize}
+ \item Photon momentum insufficient.
+ Momentum contribution of phonon (lattice vibration) required.\\
+ $\Rightarrow$ Probability of transition very small.
+ \item Recombination energy of electron-hole pairs most probably
+ released as vibrational energy of the lattice.\\
+ $\Rightarrow$ Only direct band gap semiconductors suitable for
+ effective photon generation.
+ \end{itemize}
\end{enumerate}
\section{\ldots}