\[
- \frac{\hbar^2}{2m} \frac{d^2}{dx^2} F_x(x) = E_x F_x(x), \quad
- \frac{\hbar^2}{2m} \frac{d^2}{dy^2} F_y(y) = E_y F_y(y),\quad
- - \frac{\hbar^2}{2m} \frac{d^2}{dz^2} F_z(z) = E_x F_z(z).
+ - \frac{\hbar^2}{2m} \frac{d^2}{dz^2} F_z(z) = E_z F_z(z).
\]
\[
\Rightarrow \Big[E_x + E_y + E_z\Big] F_x(x) F_y(y) F_z(z) =
{\Large\bf Tutorial 2}
\end{center}
-\section{Band structure: indirect band gap of silicon}
-Some facts about silicon:
-\begin{itemize}
- \item Lattice constant: $a=5.43 \times 10^{-10} \, m$.
- \item Silicon has an indirect band gap.
- \begin{itemize}
- \item The minimum of the conduction band is located at
- $k=0.85 \frac{2 \pi}{a}$.
- \item The maximum of the valance band is located at $k=0$.
- \item The energy gap is $E_g=1.12 \, eV$.
- \end{itemize}
-\end{itemize}
-\begin{enumerate}
- \item Calculate the wavelength of the light necessary to lift an electron from
- the valence to the conduction band.
- What is the momentum of such a photon?
- \item Calculate the phonon momentum necessary for the transition.
- Compare the momentum values of phonon and photon.
-\end{enumerate}
-
-\section{Phonons}
+\section{Phonons 1}
Consider two masses $M_1$ and $M_2$ with their idle positions
$r_{10}$ and $r_{20}$ connected by a spring with spring constant $D$.
The equilibrium distance vector is $\rho_{0}=r_{20}-r_{10}$.
keeping earlier results in mind.
\end{enumerate}
+\section{Phonons 2}
+\begin{enumerate}
+\item Derive the dispersion relation for a linear chain with two different
+ alternating types of atoms.
+\item Discuss the two solutions for $\omega^2$.
+\end{enumerate}
+
\end{document}