]> hackdaworld.org Git - lectures/latex.git/commitdiff
fixes ...
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 18 Feb 2008 23:37:04 +0000 (00:37 +0100)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 18 Feb 2008 23:37:04 +0000 (00:37 +0100)
posic/talks/dpg_2008.tex

index d15612612b5fd6f19cf057302bb3fd6d7bf03f77..d7e97e8dd4239e1e65459451199119bf71c8ab1b 100644 (file)
@@ -33,7 +33,9 @@
 \begin{document}
 
 \extraslideheight{10in}
-\slideframe{plain}
+\slideframe{none}
+
+\pagestyle{empty}
 
 % specify width and height
 \slidewidth 27.7cm 
@@ -41,7 +43,7 @@
 
 % shift it into visual area properly
 \def\slideleftmargin{3.3cm}
-\def\slidetopmargin{0.0cm}
+\def\slidetopmargin{0.6cm}
 
 \newcommand{\ham}{\mathcal{H}}
 \newcommand{\pot}{\mathcal{V}}
         \item Integrator, potential, ensemble control
         \item Simulation sequence
        \end{itemize}
-  \item Results gained by simulation
+  \item Simulation results
         \begin{itemize}
          \item Interstitials in silicon
          \item SiC-precipitation experiments
   Motivation / Introduction
  }
 
- Why C in Si?
+ \vspace{16pt}
+
+ Reasons for investigating C in Si:
 
  \begin{itemize}
   \item 3C-SiC wide band gap semiconductor formation
-  \item Strained Si
+  \item Strained Si (no precipitation wanted!)
  \end{itemize}
 
+ \vspace{16pt}
+
+ Si / 3C-SiC facts:
+
+ \begin{minipage}{8cm}
+ \begin{itemize}
+  \item Unit cell:
+        \begin{itemize}
+         \item {\color{yellow}fcc} $+$
+         \item {\color{gray}fcc shifted $1/4$ of volume diagonal}
+       \end{itemize}
+  \item Lattice constants: $4a_{Si}\approx5a_{SiC}$
+  \item Silicon density: 
+        \[
+        \frac{n_{SiC}}{n_{Si}}=
+       \frac{4/a_{SiC}^3}{8/a_{Si}^3}=
+        \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\%
+        \]
+ \end{itemize}
+ \end{minipage}
+ \hspace{8pt}
+ \begin{minipage}{4cm}
+ \includegraphics[width=4cm]{sic_unit_cell.eps}
+ \end{minipage}
 
 \end{slide}
 
  Precipitation of 3C-SiC + Creation of interstitials\\
  \end{minipage}
 
- \begin{center}
- \[
-   \textrm{Silicon density: } \quad
-   5a_{SiC}=4a_{Si} \quad \Rightarrow \quad
-   \frac{n_{SiC}}{n_{Si}}=\frac{\frac{4}{a_{SiC}^3}}{\frac{8}{a_{Si}^3}}=
-                          \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\%
- \]
- \end{center}
+ \vspace{12pt}
 
- Experimentally observed minimal diameter of precipitation: 4 - 5 nm
+ Experimentally observed:
+ \begin{itemize}
+  \item Minimal diameter of precipitation: 4 - 5 nm
+  \item (hkl)-planes identical for Si and SiC
+ \end{itemize}
 
 \end{slide}
 
   Simulation details
  }
 
+ \vspace{12pt}
+
  MD basics:
  \begin{itemize}
   \item Microscopic description of N particle system
   \item Analytical interaction potential
   \item Hamilton's equations of motion as propagation rule\\
-        in 6N-dimemnsional phase space
+        in 6N-dimensional phase space
   \item Observables obtained by time average
  \end{itemize}
 
- \vspace{4pt}
+ \vspace{12pt}
 
  Application details:
  \begin{itemize}
-  \item Integrator: velocity verlet, timestep: $1\, fs$
+  \item Integrator: Velocity Verlet, timestep: $1\, fs$
   \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$
   \item Potential: Tersoff-like bond order potential\\
         \[
        \end{center}
  \end{itemize}
 
+ \begin{picture}(0,0)(-240,-70)
+  \includegraphics[width=5cm]{tersoff_angle.eps} 
+ \end{picture}
+
 \end{slide}
 
 \begin{slide}
         \begin{itemize}
          \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
          \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
-         \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$
+         \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
               $\rightarrow$ {\color{yellow}110 dumbbell}
         \item random positions (critical distance check)
        \end{itemize}
   \item Optional heating-up 
  \end{itemize}
 
- \begin{picture}(0,0)(-210,-85)
+ \begin{picture}(0,0)(-210,-45)
   \includegraphics[width=6cm]{unit_cell.eps}
  \end{picture}