\end{minipage}\\[1cm]
}
\begin{minipage}{17cm}
-\underline{$<100>$ dumbbell configuration}
+\underline{\flq100\frq{} dumbbell configuration}
\begin{itemize}
\item $E_f=0.47$ eV
\item Very often observed
\item Initial configuration: $31\times31\times31$ unit cells Si
\item Periodic boundary conditions
\item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$
- \item Equilibration of $E_{kin}$ and $E_{pot}$ for 600 fs
+ \item Equilibration of $E_{kin}$ and $E_{pot}$
\end{itemize}
}}}}
\rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
\ncline[linewidth=0.05]{-}{in3}{in-3}
\end{pspicture}
}
-
- {\bf Results and interpretation:}\\
+ {\bf Results:}\\
Si-C and C-C pair correlation function:\\
- \includegraphics[width=24cm]{pc_si-c_c-c.eps}
+ \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-c_c-c.eps}
\begin{center}
{\tiny
{\bf Dashed vertical lines:} Further calculated C-Si distances
- in the $<100>$ C-Si dumbbell interstitial configuration}\\[0.5cm]
+ in the \flq100\frq{} C-Si dumbbell interstitial configuration}\\[0.5cm]
\end{center}
Si-Si pair correlation function:\\
- \includegraphics[width=24cm]{pc_si-si.eps}\\
+ \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-si.eps}\\
+ {\bf Interpretation:}
{\small
\begin{itemize}
\item C-C peak at 0.15 nm similar to next neighbour distance of graphite
(almost only for high C concentrations)
\item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\
(due to concatenated, differently oriented
- $<100>$ dumbbell interstitials)
+ \flq100\frq{} dumbbell interstitials)
\item Si-Si shows non-zero g(r) values around 0.31 nm
- and decrease at regular distances\\
+ and a decrease at regular distances\\
(no clear peak,
interval of enhanced g(r) corresponds to C-C peak width)
\item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC
- \item Low C concentration (i.e. $V_1$): The $<100>$ dumbbell configuration
+ \item Low C concentration (i.e. $V_1$):
+ The \flq100\frq{} dumbbell configuration
\begin{itemize}
\item is identified to stretch the Si-Si next neighbour distance
to 0.3 nm
\item is identified to contribute to the Si-C peak at 0.19 nm
\item explains further C-Si peaks (dashed vertical lines)
\end{itemize}
+ $\Rightarrow$ C atoms are first elements arranged at distances
+ expected for 3C-SiC\\
+ $\Rightarrow$ C atoms pull the Si atoms into the right
+ configuration at a later stage
\item High C concentration (i.e. $V_2$ and $V_3$):
\begin{itemize}
\item High amount of damage introduced into the system
\item Short range order observed but almost no long range order
\end{itemize}
+ $\Rightarrow$ Start of amorphous SiC-like phase formation\\
+ $\Rightarrow$ Higher temperatures required for proper SiC formation
\end{itemize}
}
\end{pbox}
+ %\vspace{-0.5cm}
\begin{pbox}
- \section*{Conclusions}
+ \section*{Conclusion}
\begin{itemize}
- \item there should be
- \item 3 conclusions
- \item at least!
+ \item \flq100\frq{} C-Si dumbbell interstitial configuration is observed
+ to be the energetically most favorable configuration
+ \item For low C concentrations C atoms introduced as differently
+ oriented C-Si dumbbells in c-Si are properly arranged
+ for 3C-SiC formation
+ \item For high C concentrations an amorphous SiC-like phase is observed
+ which suggests higher temperature simulation runs for proper
+ 3C-SiC formation
\end{itemize}
\end{pbox}