--- /dev/null
+/*
+ * albe.c - albe potential
+ *
+ * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
+ *
+ */
+
+#define _GNU_SOURCE
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <math.h>
+
+#include "../moldyn.h"
+#include "../math/math.h"
+#include "albe.h"
+
+/* create mixed terms from parameters and set them */
+int albe_mult_set_params(t_moldyn *moldyn,int element1,int element2) {
+
+ t_albe_mult_params *p;
+
+ // set cutoff before parameters (actually only necessary for some pots)
+ if(moldyn->cutoff==0.0) {
+ printf("[albe] WARNING: no cutoff!\n");
+ return -1;
+ }
+
+ /* alloc mem for potential parameters */
+ moldyn->pot_params=malloc(sizeof(t_albe_mult_params));
+ if(moldyn->pot_params==NULL) {
+ perror("[albe] pot params alloc");
+ return -1;
+ }
+
+ /* these are now albe parameters */
+ p=moldyn->pot_params;
+
+ // only 1 combination by now :p
+ switch(element1) {
+ case SI:
+ /* type: silicon */
+ p->S[0]=ALBE_S_SI;
+ p->R[0]=ALBE_R_SI;
+ p->A[0]=ALBE_A_SI;
+ p->B[0]=ALBE_B_SI;
+ p->r0[0]=ALBE_R0_SI;
+ p->lambda[0]=ALBE_LAMBDA_SI;
+ p->mu[0]=ALBE_MU_SI;
+ p->gamma[0]=ALBE_GAMMA_SI;
+ p->c[0]=ALBE_C_SI;
+ p->d[0]=ALBE_D_SI;
+ p->h[0]=ALBE_H_SI;
+ switch(element2) {
+ case C:
+ /* type: carbon */
+ p->S[1]=ALBE_S_C;
+ p->R[1]=ALBE_R_C;
+ p->A[1]=ALBE_A_C;
+ p->B[1]=ALBE_B_C;
+ p->r0[1]=ALBE_R0_C;
+ p->lambda[1]=ALBE_LAMBDA_C;
+ p->mu[1]=ALBE_MU_C;
+ p->gamma[1]=ALBE_GAMMA_C;
+ p->c[1]=ALBE_C_C;
+ p->d[1]=ALBE_D_C;
+ p->h[1]=ALBE_H_C;
+ /* mixed type: silicon carbide */
+ p->Smixed=ALBE_S_SIC;
+ p->Rmixed=ALBE_R_SIC;
+ p->Amixed=ALBE_A_SIC;
+ p->Bmixed=ALBE_B_SIC;
+ p->r0_mixed=ALBE_R0_SIC;
+ p->lambda_m=ALBE_LAMBDA_SIC;
+ p->mu_m=ALBE_MU_SIC;
+ p->gamma_m=ALBE_GAMMA_SIC;
+ p->c_mixed=ALBE_C_SIC;
+ p->d_mixed=ALBE_D_SIC;
+ p->h_mixed=ALBE_H_SIC;
+ break;
+ default:
+ printf("[albe] WARNING: element2\n");
+ return -1;
+ }
+ break;
+ default:
+ printf("[albe] WARNING: element1\n");
+ return -1;
+ }
+
+ printf("[albe] parameter completion\n");
+ p->S2[0]=p->S[0]*p->S[0];
+ p->S2[1]=p->S[1]*p->S[1];
+ p->S2mixed=p->Smixed*p->Smixed;
+
+ printf("[albe] mult parameter info:\n");
+ printf(" S (A) | %f | %f | %f\n",p->S[0],p->S[1],p->Smixed);
+ printf(" R (A) | %f | %f | %f\n",p->R[0],p->R[1],p->Rmixed);
+ printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV);
+ printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV);
+ printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1],
+ p->lambda_m);
+ printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m);
+ printf(" gamma | %f | %f\n",p->gamma[0],p->gamma[1]);
+ printf(" c | %f | %f\n",p->c[0],p->c[1]);
+ printf(" d | %f | %f\n",p->d[0],p->d[1]);
+ printf(" h | %f | %f\n",p->h[0],p->h[1]);
+
+ return 0;
+}
+
+/* albe 3 body potential function (first ij loop) */
+int albe_mult_3bp_j1(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
+
+ t_albe_mult_params *params;
+ t_albe_exchange *exchange;
+ unsigned char brand;
+ double S2;
+ t_3dvec dist_ij;
+ double d_ij2,d_ij;
+
+ params=moldyn->pot_params;
+ exchange=&(params->exchange);
+
+ /* reset zeta sum */
+ exchange->zeta_ij=0.0;
+
+ /*
+ * set ij depending values
+ */
+
+ brand=ai->brand;
+ if(brand==aj->brand) {
+ S2=params->S2[brand];
+ }
+ else {
+ S2=params->S2mixed;
+ }
+
+ /* dist_ij, d_ij2 */
+ v3_sub(&dist_ij,&(aj->r),&(ai->r));
+ if(bc) check_per_bound(moldyn,&dist_ij);
+ d_ij2=v3_absolute_square(&dist_ij);
+
+ /* if d_ij2 > S2 => no force & potential energy contribution */
+ if(d_ij2>S2) {
+ moldyn->run3bp=0;
+ return 0;
+ }
+
+ /* d_ij */
+ d_ij=sqrt(d_ij2);
+
+ /* store values */
+ exchange->dist_ij=dist_ij;
+ exchange->d_ij2=d_ij2;
+ exchange->d_ij=d_ij;
+
+ /* reset k counter for first k loop */
+ exchange->kcount=0;
+
+ return 0;
+}
+
+/* albe 3 body potential function (first k loop) */
+int albe_mult_3bp_k1(t_moldyn *moldyn,
+ t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
+
+ t_albe_mult_params *params;
+ t_albe_exchange *exchange;
+ unsigned char brand;
+ double R,S,S2;
+ t_3dvec dist_ij,dist_ik;
+ double d_ik2,d_ik,d_ij;
+ double cos_theta,h_cos,d2_h_cos2,frac,g,dg,s_r,arg;
+ double f_c_ik,df_c_ik;
+ int kcount;
+
+ params=moldyn->pot_params;
+ exchange=&(params->exchange);
+ kcount=exchange->kcount;
+
+ if(kcount>ALBE_MAXN) {
+ printf("FATAL: neighbours = %d\n",kcount);
+ printf(" -> %d %d %d\n",ai->tag,aj->tag,ak->tag);
+ }
+
+ /* ik constants */
+ brand=ai->brand;
+ if(brand==ak->brand) {
+ R=params->R[brand];
+ S=params->S[brand];
+ S2=params->S2[brand];
+ /* albe needs i,k depending c,d,h and gamma values */
+ exchange->gamma_i=&(params->gamma[brand]);
+ exchange->c_i=&(params->c[brand]);
+ exchange->d_i=&(params->d[brand]);
+ exchange->h_i=&(params->h[brand]);
+ }
+ else {
+ R=params->Rmixed;
+ S=params->Smixed;
+ S2=params->S2mixed;
+ /* albe needs i,k depending c,d,h and gamma values */
+ exchange->gamma_i=&(params->gamma_m);
+ exchange->c_i=&(params->c_mixed);
+ exchange->d_i=&(params->d_mixed);
+ exchange->h_i=&(params->h_mixed);
+ }
+ exchange->ci2=*(exchange->c_i)**(exchange->c_i);
+ exchange->di2=*(exchange->d_i)**(exchange->d_i);
+ exchange->ci2di2=exchange->ci2/exchange->di2;
+
+ /* dist_ik, d_ik2 */
+ v3_sub(&dist_ik,&(ak->r),&(ai->r));
+ if(bc) check_per_bound(moldyn,&dist_ik);
+ d_ik2=v3_absolute_square(&dist_ik);
+
+ /* store data for second k loop */
+ exchange->dist_ik[kcount]=dist_ik;
+ exchange->d_ik2[kcount]=d_ik2;
+
+ /* return if not within cutoff */
+ if(d_ik2>S2) {
+ exchange->kcount++;
+ return 0;
+ }
+
+ /* d_ik */
+ d_ik=sqrt(d_ik2);
+
+ /* dist_ij, d_ij */
+ dist_ij=exchange->dist_ij;
+ d_ij=exchange->d_ij;
+
+ /* cos theta */
+ cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik);
+
+ /* g_ijk */
+ h_cos=*(exchange->h_i)+cos_theta; // + in albe formalism
+ d2_h_cos2=exchange->di2+(h_cos*h_cos);
+ frac=exchange->ci2/d2_h_cos2;
+ g=*(exchange->gamma_i)*(1.0+exchange->ci2di2-frac);
+ dg=2.0*frac**(exchange->gamma_i)*h_cos/d2_h_cos2; // + in albe f..
+
+ /* zeta sum += f_c_ik * g_ijk */
+ if(d_ik<=R) {
+ exchange->zeta_ij+=g;
+ f_c_ik=1.0;
+ df_c_ik=0.0;
+ }
+ else {
+ s_r=S-R;
+ arg=M_PI*(d_ik-R)/s_r;
+ f_c_ik=0.5+0.5*cos(arg);
+ df_c_ik=0.5*sin(arg)*(M_PI/(s_r*d_ik));
+ exchange->zeta_ij+=f_c_ik*g;
+ }
+
+ /* store even more data for second k loop */
+ exchange->g[kcount]=g;
+ exchange->dg[kcount]=dg;
+ exchange->d_ik[kcount]=d_ik;
+ exchange->cos_theta[kcount]=cos_theta;
+ exchange->f_c_ik[kcount]=f_c_ik;
+ exchange->df_c_ik[kcount]=df_c_ik;
+
+ /* increase k counter */
+ exchange->kcount++;
+
+ return 0;
+}
+
+int albe_mult_3bp_j2(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
+
+ t_albe_mult_params *params;
+ t_albe_exchange *exchange;
+ t_3dvec force;
+ double f_a,df_a,b,db,f_c,df_c;
+ double f_r,df_r;
+ double scale;
+ double mu,B;
+ double lambda,A;
+ double d_ij,r0;
+ unsigned char brand;
+ double S,R,s_r,arg;
+ double energy;
+
+ params=moldyn->pot_params;
+ exchange=&(params->exchange);
+
+ brand=aj->brand;
+ if(brand==ai->brand) {
+ S=params->S[brand];
+ R=params->R[brand];
+ B=params->B[brand];
+ A=params->A[brand];
+ r0=params->r0[brand];
+ mu=params->mu[brand];
+ lambda=params->lambda[brand];
+ }
+ else {
+ S=params->Smixed;
+ R=params->Rmixed;
+ B=params->Bmixed;
+ A=params->Amixed;
+ r0=params->r0_mixed;
+ mu=params->mu_m;
+ lambda=params->lambda_m;
+ }
+
+ d_ij=exchange->d_ij;
+
+ /* f_c, df_c */
+ if(d_ij<R) {
+ f_c=1.0;
+ df_c=0.0;
+ }
+ else {
+ s_r=S-R;
+ arg=M_PI*(d_ij-R)/s_r;
+ f_c=0.5+0.5*cos(arg);
+ df_c=0.5*sin(arg)*(M_PI/(s_r*d_ij));
+ }
+
+ /* f_a, df_a */
+ f_a=-B*exp(-mu*(d_ij-r0));
+ df_a=mu*f_a/d_ij;
+
+ /* f_r, df_r */
+ f_r=A*exp(-lambda*(d_ij-r0));
+ df_r=lambda*f_r/d_ij;
+
+ /* b, db */
+ if(exchange->zeta_ij==0.0) {
+ b=1.0;
+ db=0.0;
+ }
+ else {
+ b=1.0/sqrt(1.0+exchange->zeta_ij);
+ db=-0.5*b/(1.0+exchange->zeta_ij);
+ }
+
+ /* force contribution for atom i */
+ scale=-0.5*(f_c*(df_r-b*df_a)+df_c*(f_r-b*f_a)); // - in albe formalism
+ v3_scale(&force,&(exchange->dist_ij),scale);
+ v3_add(&(ai->f),&(ai->f),&force);
+
+ /* force contribution for atom j */
+ v3_scale(&force,&force,-1.0); // dri rij = - drj rij
+ v3_add(&(aj->f),&(aj->f),&force);
+
+ /* virial */
+ virial_calc(aj,&force,&(exchange->dist_ij));
+
+#ifdef DEBUG
+if(moldyn->time>DSTART&&moldyn->time<DEND) {
+ if((ai==&(moldyn->atom[DATOM]))|(aj==&(moldyn->atom[DATOM]))) {
+ printf("force 3bp (j2): [%d %d sum]\n",ai->tag,aj->tag);
+ printf(" adding %f %f %f\n",force.x,force.y,force.z);
+ if(ai==&(moldyn->atom[0]))
+ printf(" total i: %f %f %f\n",ai->f.x,ai->f.y,ai->f.z);
+ if(aj==&(moldyn->atom[0]))
+ printf(" total j: %f %f %f\n",aj->f.x,aj->f.y,aj->f.z);
+ printf(" energy: %f = %f %f %f %f\n",0.5*f_c*(b*f_a+f_r),
+ f_c,b,f_a,f_r);
+ printf(" %f %f %f\n",exchange->zeta_ij,.0,.0);
+ }
+}
+#endif
+
+ /* dzeta prefactor = - f_c f_a db, (* -0.5 due to force calc) */
+ exchange->pre_dzeta=0.5*f_a*f_c*db;
+
+ /* energy contribution */
+ energy=0.5*f_c*(f_r-b*f_a); // - in albe formalism
+ moldyn->energy+=energy;
+ ai->e+=energy;
+
+ /* reset k counter for second k loop */
+ exchange->kcount=0;
+
+ return 0;
+}
+
+/* albe 3 body potential function (second k loop) */
+int albe_mult_3bp_k2(t_moldyn *moldyn,
+ t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
+
+ t_albe_mult_params *params;
+ t_albe_exchange *exchange;
+ int kcount;
+ t_3dvec dist_ik,dist_ij;
+ double d_ik2,d_ik,d_ij2,d_ij;
+ unsigned char brand;
+ double S2;
+ double g,dg,cos_theta;
+ double pre_dzeta;
+ double f_c_ik,df_c_ik;
+ double dijdik_inv,fcdg,dfcg;
+ t_3dvec dcosdrj,dcosdrk;
+ t_3dvec force,tmp;
+
+ params=moldyn->pot_params;
+ exchange=&(params->exchange);
+ kcount=exchange->kcount;
+
+ if(kcount>ALBE_MAXN)
+ printf("FATAL: neighbours!\n");
+
+ /* d_ik2 */
+ d_ik2=exchange->d_ik2[kcount];
+
+ brand=ak->brand;
+ if(brand==ai->brand)
+ S2=params->S2[brand];
+ else
+ S2=params->S2mixed;
+
+ /* return if d_ik > S */
+ if(d_ik2>S2) {
+ exchange->kcount++;
+ return 0;
+ }
+
+ /* prefactor dzeta */
+ pre_dzeta=exchange->pre_dzeta;
+
+ /* dist_ik, d_ik */
+ dist_ik=exchange->dist_ik[kcount];
+ d_ik=exchange->d_ik[kcount];
+
+ /* f_c_ik, df_c_ik */
+ f_c_ik=exchange->f_c_ik[kcount];
+ df_c_ik=exchange->df_c_ik[kcount];
+
+ /* dist_ij, d_ij2, d_ij */
+ dist_ij=exchange->dist_ij;
+ d_ij2=exchange->d_ij2;
+ d_ij=exchange->d_ij;
+
+ /* g, dg, cos_theta */
+ g=exchange->g[kcount];
+ dg=exchange->dg[kcount];
+ cos_theta=exchange->cos_theta[kcount];
+
+ /* cos_theta derivatives wrt j,k */
+ dijdik_inv=1.0/(d_ij*d_ik);
+ v3_scale(&dcosdrj,&dist_ik,dijdik_inv); // j
+ v3_scale(&tmp,&dist_ij,-cos_theta/d_ij2);
+ v3_add(&dcosdrj,&dcosdrj,&tmp);
+ v3_scale(&dcosdrk,&dist_ij,dijdik_inv); // k
+ v3_scale(&tmp,&dist_ik,-cos_theta/d_ik2);
+ v3_add(&dcosdrk,&dcosdrk,&tmp);
+
+ /* f_c_ik * dg, df_c_ik * g */
+ fcdg=f_c_ik*dg;
+ dfcg=df_c_ik*g;
+
+ /* derivative wrt j */
+ v3_scale(&force,&dcosdrj,fcdg*pre_dzeta);
+
+ /* force contribution */
+ v3_add(&(aj->f),&(aj->f),&force);
+
+#ifdef DEBUG
+if(moldyn->time>DSTART&&moldyn->time<DEND) {
+ if(aj==&(moldyn->atom[DATOM])) {
+ printf("force 3bp (k2): [%d %d %d]\n",ai->tag,aj->tag,ak->tag);
+ printf(" adding %f %f %f\n",force.x,force.y,force.z);
+ printf(" total j: %f %f %f\n",aj->f.x,aj->f.y,aj->f.z);
+ printf(" angle: %f\n",acos(cos_theta)*360.0/(2*M_PI));
+ printf(" d ij ik = %f %f\n",d_ij,d_ik);
+ }
+}
+#endif
+
+ /* force contribution to atom i */
+ v3_scale(&force,&force,-1.0);
+ v3_add(&(ai->f),&(ai->f),&force);
+
+ /* virial */
+ virial_calc(ai,&force,&dist_ij);
+
+ /* derivative wrt k */
+ v3_scale(&force,&dist_ik,-1.0*dfcg); // dri rik = - drk rik
+ v3_scale(&tmp,&dcosdrk,fcdg);
+ v3_add(&force,&force,&tmp);
+ v3_scale(&force,&force,pre_dzeta);
+
+ /* force contribution */
+ v3_add(&(ak->f),&(ak->f),&force);
+
+#ifdef DEBUG
+if(moldyn->time>DSTART&&moldyn->time<DEND) {
+ if(ak==&(moldyn->atom[DATOM])) {
+ printf("force 3bp (k2): [%d %d %d]\n",ai->tag,aj->tag,ak->tag);
+ printf(" adding %f %f %f\n",force.x,force.y,force.z);
+ printf(" total k: %f %f %f\n",ak->f.x,ak->f.y,ak->f.z);
+ printf(" angle: %f\n",acos(cos_theta)*360.0/(2*M_PI));
+ printf(" d ij ik = %f %f\n",d_ij,d_ik);
+ }
+}
+#endif
+
+ /* force contribution to atom i */
+ v3_scale(&force,&force,-1.0);
+ v3_add(&(ai->f),&(ai->f),&force);
+
+ /* virial */
+ virial_calc(ai,&force,&dist_ik);
+
+ /* increase k counter */
+ exchange->kcount++;
+
+ return 0;
+
+}
+
+int albe_mult_check_2b_bond(t_moldyn *moldyn,t_atom *itom,t_atom *jtom,u8 bc) {
+
+ t_albe_mult_params *params;
+ t_3dvec dist;
+ double d;
+ u8 brand;
+
+ v3_sub(&dist,&(jtom->r),&(itom->r));
+ if(bc) check_per_bound(moldyn,&dist);
+ d=v3_absolute_square(&dist);
+
+ params=moldyn->pot_params;
+ brand=itom->brand;
+
+ if(brand==jtom->brand) {
+ if(d<=params->S2[brand])
+ return TRUE;
+ }
+ else {
+ if(d<=params->S2mixed)
+ return TRUE;
+ }
+
+ return FALSE;
+}
--- /dev/null
+/*
+ * albe.h - albe potential header file
+ *
+ * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
+ *
+ */
+
+#ifndef ALBE_H
+#define ALBE_H
+
+#define ALBE_MAXN 16*27
+
+/* albe exchange type */
+typedef struct s_albe_exchange {
+
+ t_3dvec dist_ij;
+ double d_ij2;
+ double d_ij;
+
+ t_3dvec dist_ik[ALBE_MAXN];
+ double d_ik2[ALBE_MAXN];
+ double d_ik[ALBE_MAXN];
+
+ double f_c_ik[ALBE_MAXN];
+ double df_c_ik[ALBE_MAXN];
+
+ double g[ALBE_MAXN];
+ double dg[ALBE_MAXN];
+ double cos_theta[ALBE_MAXN];
+
+ double *gamma_i;
+ double *c_i;
+ double *d_i;
+ double *h_i;
+
+ double ci2;
+ double di2;
+ double ci2di2;
+
+ double zeta_ij;
+ double pre_dzeta;
+
+ int kcount;
+} t_albe_exchange;
+
+/* albe mult (2!) potential parameters */
+typedef struct s_albe_mult_params {
+ double S[2]; /* albe cutoff radii */
+ double S2[2]; /* albe cutoff radii squared */
+ double R[2]; /* albe cutoff radii */
+ double Smixed; /* mixed S radius */
+ double S2mixed; /* mixed S radius squared */
+ double Rmixed; /* mixed R radius */
+ double A[2]; /* factor of albe attractive part */
+ double B[2]; /* factor of albe repulsive part */
+ double r0[2]; /* r_0 */
+ double Amixed; /* mixed A factor */
+ double Bmixed; /* mixed B factor */
+ double r0_mixed; /* mixed r_0 */
+ double lambda[2]; /* albe lambda */
+ double lambda_m; /* mixed lambda */
+ double mu[2]; /* albe mu */
+ double mu_m; /* mixed mu */
+
+ double gamma[2];
+ double gamma_m;
+ double c[2];
+ double c_mixed;
+ double d[2];
+ double d_mixed;
+ double h[2];
+ double h_mixed;
+
+ t_albe_exchange exchange; /* exchange between 2bp and 3bp calc */
+} t_albe_mult_params;
+
+/* function prototypes */
+int albe_mult_set_params(t_moldyn *moldyn,int element1,int elemnt2);
+int albe_mult_3bp_j1(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc);
+int albe_mult_3bp_k1(t_moldyn *moldyn,
+ t_atom *ai,t_atom *aj,t_atom *ak,u8 bc);
+int albe_mult_3bp_j2(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc);
+int albe_mult_3bp_k2(t_moldyn *moldyn,
+ t_atom *ai,t_atom *aj,t_atom *ak,u8 bc);
+int albe_mult_check_2b_bond(t_moldyn *moldyn,t_atom *itom,t_atom *jtom,u8 bc);
+
+/* albe potential parameter defines */
+
+// silicon
+#define ALBE_R_SI (2.82-0.14)
+#define ALBE_S_SI (2.82+0.14)
+#define ALBE_A_SI (3.24*EV/0.842)
+#define ALBE_B_SI (-1.842*3.24*EV/0.842)
+#define ALBE_R0_SI 2.232
+#define ALBE_LAMBDA_SI (1.4761*sqrt(2.0*1.842))
+#define ALBE_MU_SI (1.4761*sqrt(2.0/1.842))
+#define ALBE_GAMMA_SI 0.114354
+#define ALBE_C_SI 2.00494
+#define ALBE_D_SI 0.81472
+#define ALBE_H_SI 0.259
+#define ALBE_LC_SI 5.429
+
+// carbon
+#define ALBE_R_C (2.00-0.15)
+#define ALBE_S_C (2.00+0.15)
+#define ALBE_A_C (6.00*EV/1.167)
+#define ALBE_B_C (-2.167*6.00*EV/1.167)
+#define ALBE_R0_C 1.4276
+#define ALBE_LAMBDA_C (2.0099*sqrt(2.0*2.167))
+#define ALBE_MU_C (2.0099*sqrt(2.0/2.167))
+#define ALBE_GAMMA_C 0.11233
+#define ALBE_C_C 181.910
+#define ALBE_D_C 6.28433
+#define ALBE_H_C 0.5556
+#define ALBE_LC_C 3.566
+
+// mixed: silicon carbide
+#define ALBE_R_SIC (2.40-0.20)
+#define ALBE_S_SIC (2.40+0.20)
+#define ALBE_A_SIC (4.36*EV/0.847)
+#define ALBE_B_SIC (-1.847*4.36*EV/0.847)
+#define ALBE_R0_SIC 1.79
+#define ALBE_LAMBDA_SIC (1.6991*sqrt(2.0*1.847))
+#define ALBE_MU_SIC (1.6991*sqrt(2.0/1.847))
+#define ALBE_GAMMA_SIC 0.011877
+#define ALBE_C_SIC 273987
+#define ALBE_D_SIC 180.314
+#define ALBE_H_SIC 0.68
+#define ALBE_LC_SIC 4.359
+
+#endif