\documentclass[portrait,a0b,final]{a0poster}
-\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color}
+\usepackage{epsf,psfig,pstricks,multicol,pst-grad,pst-node,color}
\usepackage{graphicx,amsmath,amssymb}
\graphicspath{{../img/}}
\usepackage[english,german]{babel}
% Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite
\renewcommand{\columnfrac}{.31}
+% potential
+\newcommand{\pot}{\mathcal{V}}
+
% header
+\vspace{-18cm}
\begin{header}
\centerline{{\Huge \bfseries Molecular dynamics simulation
of defect formation and precipitation}}
\begin{poster}
+%\vspace{-6cm}
\begin{pcolumn}
\begin{pbox}
\section*{Motivation}
[3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27.
}
\end{pbox}
+ \begin{pbox}
+ \section*{Simulation details}
+ {\bf MD basics:}
+ \begin{itemize}
+ \item Microscopic description of N particles
+ \item Analytical interaction potential
+ \item Propagation rule in 6N-dim. phase space:
+ Hamilton's equations of motion
+ \item Observables obtained by time or ensemble averages
+ \end{itemize}
+ {\bf Application details:}\\[0.5cm]
+ \begin{minipage}{17cm}
+ \begin{itemize}
+ \item Integrator: Velocity Verlet, timestep: 1 fs
+ \item Ensemble: isothermal-isobaric NPT [4]
+ \begin{itemize}
+ \item Berendsen thermostat:
+ $\tau_{\text{T}}=100\text{ fs}$
+ \item Brendsen barostat:\\
+ $\tau_{\text{P}}=100\text{ fs}$,
+ $\beta^{-1}=100\text{ GPa}$
+ \end{itemize}
+ \item Potential: Tersoff-like bond order potential [5]
+ \[
+ E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
+ \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
+ \]
+ \end{itemize}
+ \end{minipage}
+ \begin{minipage}{9cm}
+ \includegraphics[width=9cm]{tersoff_angle.eps}
+ \end{minipage}\\[1cm]
+ {\tiny
+ [4] L. Verlet, Phys. Rev. 159 (1967) 98.}\\
+ {\tiny
+ [5] P. Erhart and K. Albe, Phys. Rev. B 71 (2005) 35211.}
+ \end{pbox}
\end{pcolumn}
\begin{pcolumn}
\begin{pbox}
- \section*{Simulation algorithm}
- Hier die Simulation rein!
+ \section*{Interstitial configurations}
+ {\bf Simulation sequence:}\\
+
+\begin{minipage}{15cm}
+{\small
+ \begin{pspicture}(0,0)(14,14)
+ \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+ \parbox{14cm}{
+ \begin{itemize}
+ \item Initial configuration: $9\times9\times9$ unit cells Si
+ \item Periodic boundary conditions
+ \item $T=0\text{ K}$, $p=0\text{ bar}$
+ \end{itemize}
+ }}}}
+\rput(7,6){\rnode{insert}{\psframebox{
+ \parbox{14cm}{
+ Insertion of C / Si atom:
+ \begin{itemize}
+ \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
+ (${\color{red}\triangleleft}$)
+ \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
+ (${\color{green}\triangleright}$)
+ \item $(-1/8,-1/8,-1/4)$, $(-3/8,-3/8,-1/4)$\\
+ $\rightarrow$ {\color{magenta}110 dumbbell}
+ (${\color{magenta}\Box}$,$\circ$)
+ \item random positions (critical distance check)
+ \end{itemize}
+ }}}}
+ \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+ \parbox{7cm}{
+ Relaxation time: $2\, ps$
+ }}}}
+ \ncline[]{->}{init}{insert}
+ \ncline[]{->}{insert}{cool}
+ \end{pspicture}
+}
+\end{minipage}
+\begin{minipage}{10cm}
+ \includegraphics[width=11cm]{unit_cell_s.eps}
+\end{minipage}
+
+ {\bf Si self-interstitial results:}\\
+
+
+
+ {\bf C in Si interstitial results:}\\
+
+
\end{pbox}
\begin{pbox}
\section*{Results}