\[
H_{\text{kin}}=\frac{{\bf P}({\bf R})^2}{2M}
\]
- Integral:
- \[
- \int d\Gamma \exp(-\beta H)=
+ Integral (using change of variables):
+ \begin{eqnarray}
+ \int d\Gamma \exp(-\beta H)&=&
\int d\Gamma \exp\left[-\beta\left(\sum \frac{{\bf P}({\bf R})^2}{2M}+
- U_{\text{eq}} + U_{\text{harm}}\right)\right]
+ U_{\text{eq}} + U_{\text{harm}}\right)\right]\nonumber\\
+ &=&
+ \exp(-\beta U_{\text{eq}})\beta^{-3N}
+ \LARGE(\int\prod_{{\bf R}}d\bar{{\bf u}}({\bf R})d\bar{{\bf P}}({\bf R})
+ \nonumber\\
+ &&\times \exp\left[
+ -\sum\frac{1}{2M}{\bf P}({\bf R})^2
+ -\frac{1}{4}\sum
+ [\bar{u}_{\mu}({\bf R})-\bar{u}_{\mu}({\bf R'})]
+ \Phi_{\mu v}({\bf R}-{\bf R'})
+ [\bar{u}_v({\bf R})-\bar{u}_v({\bf R'})]
+ \right]\LARGE)\nonumber
+ \end{eqnarray}
+ \[
+ \Rightarrow w=-\frac{1}{V}\frac{\partial}{\partial \beta}
+ ln\left((\exp(-\beta U_{\text{eq}})\beta^{-3N} \times \text{const}
+ \right)
+ =\frac{U_{\text{eq}}}{V}+3\frac{N}{V}k_{\text{B}}T
+ =u_{\text{eq}}+3nk_{\text{B}}T
+ \]
+ \[
+ \Rightarrow
+ c_{\text{V}}=\frac{\partial w}{\partial T}=3nk_{\text{B}}
\]
-
\end{enumerate}
\section{Specific heat in the quantum theory of the harmonic crystal -\\
The Debye model}
-As found in exercise 1, the specific heat of a classical harmonic crystal
-is not depending on temeprature.
-However, as temperature drops below room temperature
-the specific heat of all solids is decreasing as $T^3$ in insulators
-and $AT+BT^3$ in metals.
-This can be explained in a quantum theory of the specific heat of
-a harmonic crystal, in which the energy density $w$ is given by
\[
w=\frac{1}{V}\frac{\sum_i E_i \exp(-\beta E_i)}{\sum_i \exp(-\beta E_i)}.
\]
\begin{enumerate}
- \item Show that the energy density can be rewritten to read:
+ \item Energy: $\rightarrow$ 1(a)
\[
w=-\frac{1}{V}\frac{\partial}{\partial \beta} ln \sum_i \exp(-\beta E_i).
\]