]> hackdaworld.org Git - lectures/latex.git/commitdiff
finished last exercise, integral still needs to be done
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 19 Jun 2008 17:55:07 +0000 (19:55 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 19 Jun 2008 17:55:07 +0000 (19:55 +0200)
solid_state_physics/tutorial/2_04s.tex

index c115ade805ec9913e945d9c319d1f90e991938c1..b03977cab07536a0db1e5f909f0e5ae4e24e524f 100644 (file)
              {\left.\frac{\partial p}{\partial V}\right|_T}=0
        \]
  \item $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$
-       and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$
+       and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$\\
        \[
-       C_p-C_V=\left.\frac{\partial E}{\partial T}\right|_p-
-       \left.\frac{\partial E}{\partial T}\right|_V=
-       \frac{\partial E}{\partial S}
-       \left.\frac{\partial S}{\partial T}\right|_p-
-       \frac{\partial E}{\partial S}
-       \left.\frac{\partial S}{\partial T}\right|_V=
+       C_p=\left.\frac{\partial H}{\partial T}\right|_p=
+           \left.\frac{\partial H}{\partial S}\right|_p
+           \left.\frac{\partial S}{\partial T}\right|_p=
+          T\left.\frac{\partial S}{\partial T}\right|_p
+       \]
+       \[
+       C_V=\left.\frac{\partial E}{\partial T}\right|_V=
+           \left.\frac{\partial E}{\partial S}\right|_V
+           \left.\frac{\partial S}{\partial T}\right|_V=
+           T\left.\frac{\partial S}{\partial T}\right|_V
+       \]
+       \[
+       \Rightarrow C_p-C_V=
        T\left.\frac{\partial S}{\partial T}\right|_p-
        T\left.\frac{\partial S}{\partial T}\right|_V=
        T\left(
        \left.\frac{\partial S}{\partial T}\right|_V=
        \left.\frac{\partial S}{\partial T}\right|_p+
        \left.\frac{\partial S}{\partial p}\right|_T
-       \left.\frac{\partial p}{\partial T}\right|_V,
+       \left.\frac{\partial p}{\partial T}\right|_V
        \]
-       the Maxwell relation
+       and the Maxwell relation
        \[
        \left.\frac{\partial S}{\partial p}\right|_T=
        -\left.\frac{\partial V}{\partial T}\right|_p
        \]
-       and (for a process with constant volume)
+       and the equality
        \[
-       0=dV=\left.\frac{\partial V}{\partial T}\right|_p dT+
+       dV=\left.\frac{\partial V}{\partial T}\right|_p dT+
        \left.\frac{\partial V}{\partial p}\right|_T dp
+       \stackrel{\left.\frac{\partial}{\partial T}\right|_V}{\Rightarrow}
+       0=\left.\frac{\partial V}{\partial T}\right|_p+
+         \left.\frac{\partial V}{\partial p}\right|_T
+        \left.\frac{\partial p}{\partial T}\right|_V
        \Rightarrow
        \left.\frac{\partial p}{\partial T}\right|_V=
        -\frac{\left.\frac{\partial V}{\partial T}\right|_p}