{\left.\frac{\partial p}{\partial V}\right|_T}=0
\]
\item $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$
- and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$
+ and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$\\
\[
- C_p-C_V=\left.\frac{\partial E}{\partial T}\right|_p-
- \left.\frac{\partial E}{\partial T}\right|_V=
- \frac{\partial E}{\partial S}
- \left.\frac{\partial S}{\partial T}\right|_p-
- \frac{\partial E}{\partial S}
- \left.\frac{\partial S}{\partial T}\right|_V=
+ C_p=\left.\frac{\partial H}{\partial T}\right|_p=
+ \left.\frac{\partial H}{\partial S}\right|_p
+ \left.\frac{\partial S}{\partial T}\right|_p=
+ T\left.\frac{\partial S}{\partial T}\right|_p
+ \]
+ \[
+ C_V=\left.\frac{\partial E}{\partial T}\right|_V=
+ \left.\frac{\partial E}{\partial S}\right|_V
+ \left.\frac{\partial S}{\partial T}\right|_V=
+ T\left.\frac{\partial S}{\partial T}\right|_V
+ \]
+ \[
+ \Rightarrow C_p-C_V=
T\left.\frac{\partial S}{\partial T}\right|_p-
T\left.\frac{\partial S}{\partial T}\right|_V=
T\left(
\left.\frac{\partial S}{\partial T}\right|_V=
\left.\frac{\partial S}{\partial T}\right|_p+
\left.\frac{\partial S}{\partial p}\right|_T
- \left.\frac{\partial p}{\partial T}\right|_V,
+ \left.\frac{\partial p}{\partial T}\right|_V
\]
- the Maxwell relation
+ and the Maxwell relation
\[
\left.\frac{\partial S}{\partial p}\right|_T=
-\left.\frac{\partial V}{\partial T}\right|_p
\]
- and (for a process with constant volume)
+ and the equality
\[
- 0=dV=\left.\frac{\partial V}{\partial T}\right|_p dT+
+ dV=\left.\frac{\partial V}{\partial T}\right|_p dT+
\left.\frac{\partial V}{\partial p}\right|_T dp
+ \stackrel{\left.\frac{\partial}{\partial T}\right|_V}{\Rightarrow}
+ 0=\left.\frac{\partial V}{\partial T}\right|_p+
+ \left.\frac{\partial V}{\partial p}\right|_T
+ \left.\frac{\partial p}{\partial T}\right|_V
\Rightarrow
\left.\frac{\partial p}{\partial T}\right|_V=
-\frac{\left.\frac{\partial V}{\partial T}\right|_p}