]> hackdaworld.org Git - lectures/latex.git/commitdiff
initial checkin of emrs 2008 poster
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 13 May 2008 17:30:58 +0000 (19:30 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 13 May 2008 17:30:58 +0000 (19:30 +0200)
posic/poster/emrs2008.tex [new file with mode: 0644]

diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex
new file mode 100644 (file)
index 0000000..5945eac
--- /dev/null
@@ -0,0 +1,171 @@
+\documentclass[portrait,a0b,final]{a0poster}
+\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color}
+\usepackage{graphicx,amsmath,amssymb}
+\graphicspath{{../img/}}
+\usepackage[english,german]{babel}
+
+\input{a0poster-kh}
+
+\selectlanguage{english}
+
+\renewcommand\labelitemii{{\color{black}$\bullet$}}
+
+\begin{document}
+
+% Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85
+% und wieder nach  1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter-
+% grunds angenommen)
+% Achtung Werte unter .8 verbrauchen zu viel Tinte!!!
+
+%\background{.95 .95 1.}{.78 .78 1.}{0.05}
+%\background{.50 .50 .50}{.85 .85 .85}{0.5}
+\background{.40 .48 .71}{.99 .99 .99}{0.5}
+
+\newrgbcolor{si-yellow}{.6 .6 0}
+
+% Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite
+\renewcommand{\columnfrac}{.31}
+
+% header
+\begin{header}
+     \centerline{{\Huge \bfseries Molecular dynamics simulation
+                                  of defect formation and precipitation}}
+     \vspace*{0.5cm}
+     \centerline{{\Huge \bfseries in heavily carbon doped silicon}}
+     \vspace*{1cm}
+     \centerline{\huge\textsc {\underline{F.~Zirkelbach}$^1$,
+                               J.~K.~N.~Lindner$^1$,
+                               K.~Nordlund$^2$, B.~Stritzker$^1$}}
+     \vspace*{1cm}
+     \begin{center}
+       \begin{minipage}{.065\textwidth}
+         \includegraphics[height=5.5cm]{uni-logo.eps}
+       \end{minipage}
+       \begin{minipage}{.57\textwidth}
+         \centerline{\Large $^1$ Experimentalphysik IV, Institut f\"ur Physik,
+                            Universit\"at Augsburg,}
+         \centerline{\Large Universit\"atsstr. 1,  D-86135 Augsburg, Germany}
+       \end{minipage}
+       \begin{minipage} {.065\textwidth}
+          \includegraphics[height=5cm]{Lehrstuhl-Logo.eps}
+       \end{minipage}
+     \end{center}
+     \begin{center}
+       \begin{minipage}{.20\textwidth}
+         \includegraphics[height=5.5cm]{logo_eng.eps}
+       \end{minipage}
+       \begin{minipage}{.50\textwidth}
+         \centerline{\Large $^2$ Accelerator Laboratory,
+                            Department of Physical Sciences,
+                            University of Helsinki,}
+         \centerline{\Large Pietari Kalmink. 2, 00014 Helsinki, Finland}
+       \end{minipage}
+     \end{center}
+\end{header}
+
+\begin{poster}
+
+\begin{pcolumn}
+  \begin{pbox}
+    \section*{Motivation}
+    {\bf Reasons for understanding the 3C-SiC precipitation process}
+    \begin{itemize}
+      \item Significant technological progress
+            in 3C-SiC wide band gap semiconductor thin film formation [1].
+      \item New perspectives for processes relying upon prevention of
+            precipitation, e.g. fabrication of strained pseudomorphic
+           $\text{Si}_{1-y}\text{C}_y$ heterostructures [2].
+    \end{itemize}
+    {\tiny
+     [1] J. H. Edgar, J. Mater. Res. 7 (1992) 235.}\\
+    {\tiny
+     [2] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux,
+         J. K. Watanabe, J. W. Mayer, J. Appl. Phys. 79 (1996) 637.}
+  \end{pbox}
+  \begin{pbox}
+    \section*{Crystalline silicon and cubic silicon carbide}
+    {\bf Lattice types and unit cells:}
+    \begin{itemize}
+      \item Crystalline silicon (c-Si) has diamond structure\\
+            $\Rightarrow {\color{si-yellow}\bullet}$ and
+            ${\color{gray}\bullet}$ are Si atoms
+      \item Cubic silicon carbide (3C-SiC) has zincblende structure\\
+            $\Rightarrow {\color{si-yellow}\bullet}$ are Si atoms,
+            ${\color{gray}\bullet}$ are C atoms
+    \end{itemize}
+    \begin{minipage}{15cm}
+    {\bf Lattice constants:}
+    \[
+    4a_{\text{c-Si}}\approx5a_{\text{3C-SiC}}
+    \]
+    {\bf Silicon density:}
+    \[
+    \frac{n_{\text{3C-SiC}}}{n_{\text{c-Si}}}=97,66\,\%
+    \]
+    \end{minipage}
+    \begin{minipage}{10cm}
+      \includegraphics[width=10cm]{sic_unit_cell.eps}
+    \end{minipage}
+  \end{pbox}
+  \begin{pbox}
+    \section*{Supposed Si to 3C-SiC conversion}
+    {\bf Schematic of the conversion mechanism}\\\\
+    \begin{minipage}{7.8cm}
+    \includegraphics[width=7.7cm]{sic_prec_seq_01.eps}
+    \end{minipage}
+    \hspace{0.6cm}
+    \begin{minipage}{7.8cm}
+    \includegraphics[width=7.7cm]{sic_prec_seq_02.eps}
+    \end{minipage}
+    \hspace{0.6cm}
+    \begin{minipage}{7.8cm}
+    \includegraphics[width=7.7cm]{sic_prec_seq_03.eps}
+    \end{minipage}
+    \vspace{1cm}
+    \begin{enumerate}
+      \item Formation of C-Si dumbbells on regular c-Si lattice sites
+      \item Agglomeration into large clusters (embryos)
+      \item Precipitation of 3C-SiC + Creation of interstitials
+    \end{enumerate}
+    \vspace{1cm}
+    {\bf Experimental observations} [3]
+    \begin{itemize}
+      \item Minimal diameter of precipitation: 2 - 4 nm
+      \item Equal orientation of c-Si and 3C-SiC (hkl)-planes
+    \end{itemize}
+    {\tiny
+     [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27.
+    }
+  \end{pbox}
+
+\end{pcolumn}
+\begin{pcolumn}
+
+  \begin{pbox}
+    \section*{Simulation algorithm}
+    Hier die Simulation rein!
+  \end{pbox}
+  \begin{pbox}
+    \section*{Results}
+    Hier die Resultate!
+  \end{pbox}
+\end{pcolumn}
+\begin{pcolumn}
+
+  \begin{pbox}
+       \section*{Structural/compositional information}
+       blabla
+  \end{pbox}
+  \begin{pbox}
+       \section*{Recipe for thick films of ordered lamellae}
+       blabla
+  \end{pbox}
+  \begin{pbox}
+    \section*{Conclusions}
+    Hier die Zusammenfassung
+  \end{pbox}
+
+\end{pcolumn}
+\end{poster}
+\end{document}
+