c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}\frac{\partial}{\partial T}
\frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
\]
- Large crystal: ($\lim_{V\to\infty}\frac{1}{V}\sum_{{\bf k}}F({\bf k})
- =\int\frac{d{\bf k}}{(2\pi)^3}F({\bf k})$)
+ Large crystal:
\[
- \Rightarrow
- c_{\text{V}}=\frac{\partial}{\partial T}
+ \lim_{v\rightarrow\infty}c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}
+ \frac{\partial}{\partial T}
+ \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+ =\frac{\partial}{\partial T}
\sum_s\int\frac{d{\bf k}}{(2\pi)^3}
\frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
\]
\item \begin{itemize}
- \item Debye dispersion relation: $w=ck$
- \item Volume of $k$-space per wave vector:\\
- $(2\pi)^3/V \Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3
+ \item {\color{red}3} branches with Debye dispersion relation
+ $w={\color{green}ck}$
+ \item Volume of $k$-space per wave vector: $(2\pi)^3/V$\\
+ $\Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3
\Rightarrow n=\frac{N}{V}=\frac{k_{\text{D}}^3}{6\pi^2}$
+ and $dn={\color{blue}\frac{k^2}{2\pi^2}dk}$
\item Debye frequency: $\omega_{\text{D}}=k_{\text{D}}c$
\item Debye temperature:
- $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$
+ $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$,
+ $\Theta_{\text{D}}=\hbar ck_{\text{D}}/k_{\text{B}}$
\end{itemize}
Integral:
\[
- c_{\text{V}}=\ldots
+ c_{\text{V}}=\frac{\partial}{\partial T}\, {\color{red}3}\int_0^{k_D}
+ {\color{blue}\frac{k^2}{2\pi^2}dk} \frac{\hbar {\color{green}ck}}
+ {e^{\beta\hbar {\color{green}ck}}-1}=
+ \frac{\partial}{\partial T}\frac{3\hbar c}{2\pi^2}\int_0^{k_D}
+ \frac{k^3}{e^{\beta\hbar ck}-1}dk=
+ \frac{3\hbar c}{2\pi^2}\int_0^{k_D}
+ \frac{k^3e^{\beta\hbar ck}\beta\hbar ck\frac{1}{T}}
+ {(e^{\beta\hbar ck}-1)^2}dk
+ \]
+ Change of variables: $\beta\hbar ck=x$
+ \[
+ \Rightarrow
+ k=\frac{x}{\beta\hbar c} \quad \textrm{, } \quad
+ dk=\frac{1}{\beta\hbar c} dx
+ \]
+ \[
+ c_{\text{V}}=
\]
\end{enumerate}