\begin{itemize}
\item Initial configuration: $31\times31\times31$ unit cells Si
\item Periodic boundary conditions
- \item $T=450\, ^{\circ}C$
- \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
+ \item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$
+ \item Equilibration of $E_{kin}$ and $E_{pot}$ for 600 fs
\end{itemize}
}}}}
\rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
\parbox{15cm}{
- Insertion of $6000$ carbon atoms at constant\\
+ Insertion of 6000 carbon atoms at constant\\
temperature into:
\begin{itemize}
- \item Total simulation volume $V_1$ {\pnode{in1}}
- \item Volume of minimal SiC precipitation $V_2$ {\pnode{in2}}
- \item Volume of necessary amount of Si $V_3$ {\pnode{in3}}
+ \item Total simulation volume $V_1$
+ \item Volume of minimal 3C-SiC precipitation $V_2$
+ \item Volume of necessary amount of Si $V_3$
\end{itemize}
}}}}
\rput(7.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
\psframe[fillstyle=solid,fillcolor=white](16,2.6)(26,12.6)
\psframe[fillstyle=solid,fillcolor=lightgray](18,4.6)(24,10.6)
\psframe[fillstyle=solid,fillcolor=gray](18.5,5.1)(23.5,10.1)
- \rput(17,8.4){\pnode{ins1}}
- \rput(18.15,6.88){\pnode{ins2}}
+ \rput(9,5.4){\pnode{in1}}
+ \rput(15,5.4){\pnode{in-1}}
+ \rput(17,7.2){\pnode{ins1}}
+ \rput(14,4.2){\pnode{in2}}
+ \rput(15,4.2){\pnode{in-2}}
+ \rput(18.25,6.88){\pnode{ins2}}
+ \rput(12,3.0){\pnode{in3}}
+ \rput(15,3.0){\pnode{in-3}}
\rput(21,7.6){\pnode{ins3}}
- \ncline[linewidth=0.08]{->}{in1}{ins1}
- \ncline[linewidth=0.08]{->}{in2}{ins2}
- \ncline[linewidth=0.08]{->}{in3}{ins3}
+ \ncline[linewidth=0.05]{->}{in-1}{ins1}
+ \ncline[linewidth=0.05]{->}{in-2}{ins2}
+ \ncline[linewidth=0.05]{->}{in-3}{ins3}
+ \ncline[linewidth=0.05]{-}{in1}{in-1}
+ \ncline[linewidth=0.05]{-}{in2}{in-2}
+ \ncline[linewidth=0.05]{-}{in3}{in-3}
\end{pspicture}
}
- {\bf Results:}\\
- Foobar hier ..
-
+ {\bf Results and interpretation:}\\
+ Si-C and C-C pair correlation function:\\
+ \includegraphics[width=24cm]{pc_si-c_c-c.eps}
+ \begin{center}
+ {\tiny
+ {\bf Dashed vertical lines:} Further calculated C-Si distances
+ in the $<100>$ C-Si dumbbell interstitial configuration}\\[0.5cm]
+ \end{center}
+ Si-Si pair correlation function:\\
+ \includegraphics[width=24cm]{pc_si-si.eps}\\
+ {\small
+ \begin{itemize}
+ \item C-C peak at 0.15 nm similar to next neighbour distance of graphite
+ or diamond\\
+ $\Rightarrow$ Formation of strong C-C bonds
+ (almost only for high C concentrations)
+ \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\
+ (due to concatenated, differently oriented
+ $<100>$ dumbbell interstitials)
+ \item Si-Si shows non-zero g(r) values around 0.31 nm
+ and decrease at regular distances\\
+ (no clear peak,
+ interval of enhanced g(r) corresponds to C-C peak width)
+ \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC
+ \item Low C concentration (i.e. $V_1$): The $<100>$ dumbbell configuration
+ \begin{itemize}
+ \item is identified to stretch the Si-Si next neighbour distance
+ to 0.3 nm
+ \item is identified to contribute to the Si-C peak at 0.19 nm
+ \item explains further C-Si peaks (dashed vertical lines)
+ \end{itemize}
+ \item High C concentration (i.e. $V_2$ and $V_3$):
+ \begin{itemize}
+ \item High amount of damage introduced into the system
+ \item Short range order observed but almost no long range order
+ \end{itemize}
+ \end{itemize}
+ }
+
\end{pbox}
\begin{pbox}
\section*{Conclusions}