\right)\nonumber\\
&=&-\frac{1}{V}\frac{\partial}{\partial \beta} ln \prod_{{\bf k}s}
\frac{\exp(-\beta\hbar\omega_s({\bf k})/2)}
- {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber
+ {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber\\
+ &=&-\frac{1}{V}\frac{\partial}{\partial \beta} \sum_{{\bf k}s} ln
+ \frac{\exp(-\beta\hbar\omega_s({\bf k})/2)}
+ {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber\\
+ &=&-\frac{1}{V}\sum_{{\bf k}s}
+ \frac{1-\exp(-\beta\hbar\omega_s({\bf k}))}
+ {\exp(-\beta\hbar\omega_s({\bf k})/2)}\nonumber\\
+ &&\times
+ \frac{(1-e^{-\beta\hbar\omega_s({\bf k})})
+ e^{-\beta\hbar\omega_s({\bf k})/2}(-\hbar\omega_s({\bf k})/2)+
+ e^{-\beta\hbar\omega_s({\bf k})/2}
+ e^{-\beta\hbar\omega_s({\bf k})}(-\hbar\omega_s({\bf k}))}
+ {(1-e^{-\beta\hbar\omega_s({\bf k})})^2}\nonumber\\
+ &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+ \frac{e^{-\beta\hbar\omega_s({\bf k})}-
+ \frac{1}{2}(1-e^{-\beta\hbar\omega_s({\bf k})})}
+ {1-e^{-\beta\hbar\omega_s({\bf k})}}\nonumber\\
+ &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+ \frac{\frac{1}{2}e^{-\beta\hbar\omega_s({\bf k})}-\frac{1}{2}}
+ {1-e^{-\beta\hbar\omega_s({\bf k})}}
+ =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+ \frac{1+e^{\beta\hbar\omega_s({\bf k})}}
+ {e^{\beta\hbar\omega_s({\bf k})}-1}\nonumber\\
+ &=&\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+ \frac{1+e^{\beta\hbar\omega_s({\bf k})}}
+ {e^{\beta\hbar\omega_s({\bf k})}-1}
+ =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+ \frac{2+e^{\beta\hbar\omega_s({\bf k})}-1}
+ {e^{\beta\hbar\omega_s({\bf k})}-1}\nonumber\\
+ &=&\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+ (\frac{1}{e^{\beta\hbar\omega_s({\bf k})}-1}
+ +\frac{e^{\beta\hbar\omega_s({\bf k})}-1}
+ {2(e^{\beta\hbar\omega_s({\bf k})}-1)})
+ =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+ (\underbrace{\frac{1}{e^{\beta\hbar\omega_s({\bf k})}-1}}_{n_s({\bf k})}
+ +\frac{1}{2})\nonumber
\end{eqnarray}
+ $n_s({\bf k})$: Mean excitation number of the normal mode ${\bf k}s$ at
+ temperature $T$.
- \item Evaluate the expression of the energy density.
- {\bf Hint:}
- The energy levels of a harmonic crystal of N ions
- can be regarded as 3N independent oscillators,
- whose frequencies are those of the 3N classical normal modes.
- The contribution to the total energy of a particular normal mode
- with angular frequency $\omega_s({\bf k})$
- ($s$: branch, ${\bf k}$: wave vector) is given by
- $(n_{{\bf k}s} + \frac{1}{2})\hbar\omega_s({\bf k})$ with the
- excitation number $n_{{\bf k}s}$ being restricted to integers greater
- or equal zero.
- The total energy is given by the sum over the energies of the individual
- normal modes.
- Use the totals formula of the geometric series to expcitly calculate
- the sum of the exponential functions.
- \item Separate the above result into a term vanishing as $T$ goes to zero and
- a second term giving the energy of the zero-point vibrations of the
- normal modes.
- \item Write down an expression for the specific heat.
- Consider a large crystal and thus replace the sum over the discrete
- wave vectors with an integral.
- \item Debye replaced all branches of the vibrational spectrum with three
- branches, each of them obeying the dispersion relation
- $w=ck$.
- Additionally the integral is cut-off at a radius $k_{\text{D}}$
- to have a total amount of N allowed wave vectors.
- Determine $k_{\text{D}}$.
- Evaluate the simplified integral and introduce the
- Debye frequency $\omega_{\text{D}}=k_{\text{D}}c$
- and the Debye temperature $\Theta_{\text{D}}$ which is given by
- $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$.
- Write down the resulting expression for the specific heat.
+ \item \[
+ w=w_{\text{eq}}+
+ \frac{1}{V}\sum_{{\bf k}s}\frac{1}{2}\hbar\omega_s({\bf k})+
+ \frac{1}{V}\sum_{{\bf k}s}
+ \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+ \]
+ \item \[
+ c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}\frac{\partial}{\partial T}
+ \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+ \]
+ Large crystal: ($\lim_{V\to\infty}\frac{1}{V}\sum_{{\bf k}}F({\bf k})
+ =\int\frac{d{\bf k}}{(2\pi)^3}F({\bf k})$)
+ \[
+ \Rightarrow
+ c_{\text{V}}=\frac{\partial}{\partial T}
+ \sum_s\int\frac{d{\bf k}}{(2\pi)^3}
+ \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+ \]
+ \item \begin{itemize}
+ \item Debye dispersion relation: $w=ck$
+ \item Volume of $k$-space per wave vector:\\
+ $(2\pi)^3/V \Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3
+ \Rightarrow n=\frac{N}{V}=\frac{k_{\text{D}}^3}{6\pi^2}$
+ \item Debye frequency: $\omega_{\text{D}}=k_{\text{D}}c$
+ \item Debye temperature:
+ $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$
+ \end{itemize}
+ Integral:
+ \[
+ c_{\text{V}}=\ldots
+ \]
\end{enumerate}
\end{document}