}
} while(list_next(this)!=L_NO_NEXT_ELEMENT);
+
+ /* 2bp post function */
+ if(moldyn->func2b_post)
+ mlodyn->func2b_post(moldyn,
+ &(itom[i]),
+ jtom,bc_ij);
+
}
}
}
p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]);
p->mu_m=0.5*(p->mu[0]+p->mu[1]);
+ printf("[moldyn] tersoff mult parameter info:\n");
+ printf(" S (m) | %.12f | %.12f | %.12f\n",p->S[0],p->S[1],p->Smixed);
+ printf(" R (m) | %.12f | %.12f | %.12f\n",p->R[0],p->R[1],p->Rmixed);
+ printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV);
+ printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV);
+ printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1],
+ p->lambda_m);
+ printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m);
+ printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]);
+ printf(" n | %f | %f\n",p->n[0],p->n[1]);
+ printf(" c | %f | %f\n",p->c[0],p->c[1]);
+ printf(" d | %f | %f\n",p->d[0],p->d[1]);
+ printf(" h | %f | %f\n",p->h[0],p->h[1]);
+ printf(" chi | %f \n",p->chi);
+
return 0;
}
/* enable the run of 3bp function */
exchange->run3bp=1;
+ /* reset 3bp sums */
+ exchange->3bp_sum1=0.0;
+ exchange->3bp_sum2=0.0;
+
+ return 0;
+}
+
+/* tersoff 2 body post part */
+
+int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
+
+ /* here we have to allow for the 3bp sums */
+
+ t_tersoff_mult_params *params;
+ t_tersoff_exchange *exchange;
+
+ t_3dvec force,temp,*db_ij;
+ double db_ij_scale1,db_ij_scale2;
+ double b_ij;
+ double f_c,df_c,f_a,df_a;
+
+ params=moldyn->pot2b_params;
+ exchange=&(moldyn->exchange);
+
+ db_ij=&(exchange->db_ij);
+ f_c=exchange->f_c;
+ df_c=exchange->df_c;
+ f_a=exchange->f_a;
+ df_a=exchange->df_a;
+
+ db_ij_scale1=(1+betan*3bp_sum1);
+ db_ij_scale2=(n*betan*3bp_sum2);
+ help=pow(db_ij_scale1,-1.0/(2*n)-1);
+ b_ij=chi*db_ij_scale1*help;
+ db_ij_scale1=-chi/(2*n)*help;
+
+ v3_scale(db_ij,db_ij,(db_ij_scale1*db_ij_scale2));
+ v3_scale(db_ij,db_ij,f_a);
+
+ v3_scale(&temp,dist_ij,b_ij*df_a);
+
+ v3_add(&force,&temp,db_ij);
+ v3_scale(&force,&force,f_c);
+
+ v3_scale(&temp,&dist_ij,f_a*b_ij*df_c);
+
+ /* add energy of 3bp sum */
+ moldyn->energy+=(0.5*f_c*b_ij*f_a);
+ /* add force of 3bp calculation */
+ v3_add(&(ai->f),&temp,&force);
+
return 0;
}
d_ij=exchange->d_ij;
d_ij2=exchange->d_ij2;
+ dist_ij=exchange->dist_ij;
f_a=params->exchange.f_a;
df_a=params->exchange.df_a;
+
+ f_c=exchange->f_c;
+ df_c=exchange->df_c;
/* d_ij is <= S, as we didn't return so far! */
numer=d_ij2+d_ik*d_ik-d_jk*d_jk;
denom=2*d_ij*d_ik;
- //cos_theta=numer/denom;
- cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik);
+ cos_theta=numer/denom;
+ //cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik);
sin_theta=sqrt(1.0-(cos_theta*cos_theta));
theta=acos(cos_theta);
d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom);
h_cos=(h-cos_theta);
h_cos2=h_cos*h_cos;
- d2_h_cos2=d2-h_cos2;
+ d2_h_cos2=d2+h_cos2;
/* some usefull expressions */
- frac1=c2/(d2-h_cos2);
+ frac1=c2/(d2_h_cos2);
bracket1=1+c2d2-frac1;
if(f_c_ik==0.0) {
bracket2=0.0;
printf("Foo -> 1: ");
}
bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0);
-printf("THETA: %.15f %.15f\n",cos_theta,theta*180/(2*M_PI));
bracket3_pow=bracket3_pow_1*bracket3;
+printf("%.15f %.15f %.15f\n",bracket2_n_1,bracket2_n);
/* now go on with calc of b_ij and derivation of b_ij */
b_ij=chi*bracket3_pow;
#define ATOM_ATTR_FP 0x01 /* fixed position (bulk material) */
#define ATOM_ATTR_HB 0x02 /* coupled to heat bath (velocity scaling) */
-#define ATOM_ATTR_1BP 0x10 /* single paricle potential */
-#define ATOM_ATTR_2BP 0x20 /* pair potential */
-#define ATOM_ATTR_3BP 0x40 /* 3 body potential */
+#define ATOM_ATTR_1BP 0x10 /* single paricle potential */
+#define ATOM_ATTR_2BP 0x20 /* pair potential */
+#define ATOM_ATTR_3BP 0x40 /* 3 body potential */
/* cell lists */
typedef struct s_linkcell {
int (*func1b)(struct s_moldyn *moldyn,t_atom *ai);
void *pot1b_params;
int (*func2b)(struct s_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc);
+ void (*func2b_post)(struct s_moldyn *moldyn,t_atom *ai,t_atom *aj,
+ u8 bc);
void *pot2b_params;
int (*func3b)(struct s_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,
u8 bck);
double betan;
u8 run3bp;
+
+ t_3dvec db_ij;
+ double 3bp_sum1;
+ double 3bp_sum2;
} t_tersoff_exchange;
/* tersoff multi (2!) potential parameters */
#define TM_BETA_SI 1.1000e-6
#define TM_N_SI 0.78734
#define TM_C_SI 1.0039e5
-#define TM_D_SI 1.62170
+#define TM_D_SI 16.217
#define TM_H_SI (-0.59825)
#define TM_R_C 1.8e-10 /* m */
typedef int (*pf_func1b)(t_moldyn *,t_atom *ai);
typedef int (*pf_func2b)(t_moldyn *,t_atom *,t_atom *,u8 bc);
+typedef int (*pf_func2b_post)(t_moldyn *,t_atom *,t_atom *,u8 bc);
typedef int (*pf_func3b)(t_moldyn *,t_atom *,t_atom *,t_atom *,u8 bc);
int moldyn_init(t_moldyn *moldyn,int argc,char **argv);
int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z);
int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params);
int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params);
+int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params);
int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params);
int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer);
tp.n[1]=TM_N_C;
tp.c[1]=TM_C_C;
tp.d[1]=TM_D_C;
+ tp.h[1]=TM_H_C;
tp.chi=TM_CHI_SIC;
/* set (initial) dimensions of simulation volume */
printf("[sic] setting dimensions\n");
- set_dim(&md,4*LC_SI,4*LC_SI,4*LC_SI,TRUE);
+ set_dim(&md,3*LC_SI,3*LC_SI,3*LC_SI,TRUE);
/* set periodic boundary conditions in all directions */
printf("[sic] setting periodic boundary conditions\n");
create_lattice(&md,DIAMOND,LC_SI,SI,M_SI,
ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
//ATOM_ATTR_2BP|ATOM_ATTR_HB,
- 0,4,4,4);
+ 0,3,3,3);
/* setting a nearest neighbour distance for the moldyn checks */
set_nn_dist(&md,sqrt(3.0)*LC_SI/4.0); /* diamond ! */
/* create the simulation schedule */
printf("[sic] adding schedule\n");
- moldyn_add_schedule(&md,100,1.0e-15);
+ moldyn_add_schedule(&md,10,1.0e-15);
/* activate logging */
printf("[sic] activate logging\n");