$\Rightarrow
M_1M_2\omega^4-2C(M_1+M_2)\omega^2+2C^2(1-\cos(ka))=0$
\end{itemize}
-\item \[
- \omega^2=C\left(\frac{1}{M_1}+\frac{1}{M_2}\right)\pm
- C\sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2-
- \frac{2(1-\cos(ka))}{M_1M_2}}
- \]
+\item \begin{eqnarray}
+ \omega^2&=&C\left(\frac{2C(M_1+M_2)}{2M_1M_2}\right)\pm
+ \sqrt{\frac{4C^2(M_1+M_2)^2}{4M_1^2M_2^2}-
+ \frac{2C^2(1-cos(ka))}{M_1M_2}} \nonumber \\
+ &=&C\left(\frac{1}{M_1}+\frac{1}{M_2}\right)\pm
+ \sqrt{C^2\frac{(M_1+M_2)^2}{M_1^2M_2^2}-
+ \frac{1}{M_1M_2}2C^2(1-cos(ka))} \nonumber \\
+ &=&C\left(\frac{1}{M_1}+\frac{1}{M_2}\right)\pm
+ C\sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2-
+ \frac{2(1-\cos(ka))}{M_1M_2}} \nonumber
+ \end{eqnarray}
\begin{itemize}
\item $ka\ll 1$:\\
- $\rightarrow \cos(ka)\approx 1-\frac{1}{2}k^2a^2$\\
+ $\rightarrow \cos(ka)\approx 1-\frac{1}{2}k^2a^2$ (Taylor)\\
Optical branch: $\omega^2\approx
2C\left(\frac{1}{M_1}+\frac{1}{M_2}\right)$\\
Acoustic branch: $\omega^2\approx