--- /dev/null
+\pdfoutput=0
+\documentclass[a4paper,11pt]{article}
+\usepackage[activate]{pdfcprot}
+\usepackage{verbatim}
+\usepackage{a4}
+\usepackage{a4wide}
+\usepackage[german]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath}
+\usepackage{ae}
+\usepackage{aecompl}
+\usepackage[dvips]{graphicx}
+\graphicspath{{./img/}}
+\usepackage{color}
+\usepackage{pstricks}
+\usepackage{pst-node}
+\usepackage{rotating}
+
+\setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
+\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
+\setlength{\oddsidemargin}{-10mm}
+\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
+\setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
+
+\renewcommand{\labelenumi}{(\alph{enumi})}
+\renewcommand{\labelenumii}{\arabic{enumii})}
+\renewcommand{\labelenumiii}{\roman{enumiii})}
+
+\begin{document}
+
+% header
+\begin{center}
+ {\LARGE {\bf Materials Physics II}\\}
+ \vspace{8pt}
+ Prof. B. Stritzker\\
+ SS 2008\\
+ \vspace{8pt}
+ {\Large\bf Tutorial 4}
+\end{center}
+
+\vspace{8pt}
+
+\section{Legendre transformation and Maxwell relations}
+
+\begin{enumerate}
+ \item Consider the total differential
+ \[
+ df= \sum_{i=1}^{n} u_i dx_i
+ \]
+ with the state function $f=f(x_1,\ldots,x_n)$ and its partial derivatives
+ $u_i=\frac{\partial f}{\partial x_i}$.
+ Rewrite the total differential of the function $g$ defined as
+ \[
+ g=f-\sum_{i=r+1}^{n} u_i x_i
+ \]
+ in such a way that $g$ is immediately identified to be a function of
+ the variables $x_1,\ldots,x_r$ and $u_{r+1},\ldots,u_n$,
+ where $u_i$ is called the conjugate variable of $x_i$.
+ The transformation is called Legendre transformation.
+ \item By taking the derivatives of transformed thermodynamic potentials
+ with respect to the variables they depend on,
+ relations between intensive and extensive variables can be gained.
+
+ Start with the internal energy $E=E(S,V)$.
+ Write down the total differential using the equalities
+ $T=\left.\frac{\partial E}{\partial S}\right|_V$ and
+ $-p=\left.\frac{\partial E}{\partial V}\right|_S$.
+ Find more relations by doing the transformation to the potentials
+ \begin{itemize}
+ \item $H=E+pV$ (Enthalpy)
+ \item $F=E-TS$ (Helmholtz free energy)
+ \item $G=H-TS=E+pV-TS$ (Gibbs free energy)
+ \end{itemize}
+ and taking the appropriate derivatives.
+ \item For a thermodynamic potential $\Phi(X,Y)$ the following identity
+ expressing the permutability of derivatives holds:
+ \[
+ \frac{\partial^2 \Phi}{\partial X \partial Y} =
+ \frac{\partial^2 \Phi}{\partial Y \partial X}
+ \]
+ Derive the Maxwell relations by taking the mixed derivatives of the
+ potentials in (b) with respect to the variables they depend on.
+ Exchange the sequence of derivation and use the identities gained in (b).
+\end{enumerate}
+
+\section{Thermal expansion of solids}
+
+It is well known that solids change their length $L$ and volume $V$ respectively
+if there is a change in temperature $T$ or in pressure $p$ of the system.
+
+\begin{enumerate}
+ \item The coefficient of thermal expansion of a solid is given by
+ $\alpha_L=\frac{1}{L}\left.\frac{\partial L}{\partial T}\right|_p$.
+ Show that the coefficient of thermal expansion of the volume
+ $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$
+ equals $3\alpha_L$ for isotropic materials.
+ \item
+ \item
+\end{enumerate}
+
+\end{document}