From: hackbard Date: Thu, 16 Jul 2009 17:21:43 +0000 (+0200) Subject: some new stuff + new todo ... X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=071e7bdd84bc69d2dde1835c2693fc1375d2bfb2;p=lectures%2Flatex.git some new stuff + new todo ... --- diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 502375b..4197c0a 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -219,7 +219,7 @@ POTIM = 0.1 \item Calculation of cohesive energies for different lattice constants \item No ionic update \item Tetrahedron method with Blöchl corrections for - the partial occupancies $f_{nk}$ + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ \item Supercell 3 (8 atoms, 4 primitive cells) \end{itemize} \vspace*{0.6cm} @@ -270,7 +270,7 @@ POTIM = 0.1 \item Calculation of cohesive energies for different lattice constants \item No ionic update \item Tetrahedron method with Blöchl corrections for - the partial occupancies $f_{nk}$ + the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ \end{itemize} \vspace*{0.6cm} \begin{minipage}{6.5cm} @@ -283,7 +283,15 @@ POTIM = 0.1 \begin{center} {\color{red} Non-continuous energies\\ - for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$! + for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\ + } + \vspace*{0.5cm} + {\footnotesize + Does this matter in structural optimizaton simulations? + \begin{itemize} + \item Derivative might be continuous + \item Similar lattice constants where derivative equals zero + \end{itemize} } \end{center} \end{minipage} @@ -348,25 +356,30 @@ POTIM = 0.1 \item Spin polarized calculation \item Interpolation formula according to Vosko Wilk and Nusair for the correlation part of the exchange correlation functional - \item Gaussian smearing for the partial occupancies $f_{nk}$ + \item Gaussian smearing for the partial occupancies + $f(\{\epsilon_{n{\bf k}}\})$ ($\sigma=0.05$) \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001 \item Supercell: one atom in cubic $10\times 10\times 10$ \AA$^3$ box \end{itemize} {\color{blue} - $E_{\textrm{free,sp}}(\textrm{Si},250\, \textrm{eV})= + $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})= -0.70036911\,\textrm{eV}$ + }\\ + {\color{blue} + $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})= + -0.70021403\,\textrm{eV}$ }, {\color{gray} - $E_{\textrm{free,sp}}(\textrm{C},xxx\, \textrm{eV})= - yyy\,\textrm{eV}$ + $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})= + -1.3535731\,\textrm{eV}$ } \item $E$: energy (non-polarized) of system of interest composed of\\ n atoms of type N, m atoms of type M, \ldots \end{itemize} - \vspace*{0.3cm} + \vspace*{0.2cm} {\color{red} \[ \Rightarrow @@ -451,10 +464,10 @@ POTIM = 0.1 \includegraphics[width=7.0cm]{si_self_int.ps} \end{minipage} \begin{minipage}{5cm} - $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\ - $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\ - $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\ - $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$ + $E_{\textrm{f}}^{\textrm{110},\,{\color{red}32}\textrm{pc}}=3.38\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$ \end{minipage} \end{slide} @@ -479,6 +492,7 @@ POTIM = 0.1 \item hence also connected to choice of smearing method? \item constraints can only be applied to the lattice vectors! \end{itemize} + \item Use of real space projection operators? \item \ldots \end{itemize} @@ -490,8 +504,91 @@ POTIM = 0.1 Review (so far) ...\\ } - - + Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ + and $k$-point mesh + + \begin{itemize} + \item $1\times 1\times 1$ Type 0 simulations + \begin{itemize} + \item No difference in tetrahedron method and Gauss smearing + \item ... + \end{itemize} + \item $1\times 1\times 1$ Type 2 simulations + \begin{itemize} + \item Again, no difference in tetrahedron method and Gauss smearing + \item ... + \end{itemize} + \end{itemize} + + {\LARGE\bf\color{red} + More simulations running ... + } + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Symmetry (in defect simulations) + + {\LARGE\bf\color{red} + Simulations running ... + } + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Real space projection + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Energy cut-off + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + Size and type of supercell + +\end{slide} + +\begin{slide} + + {\large\bf + Not answered (so far) ...\\ + } + +\vspace{1.5cm} + + \LARGE + \bf + \color{blue} + + \begin{center} + Continue\\ + with\\ + US LDA? + \end{center} + +\vspace{1.5cm} \end{slide}