From: hackbard Date: Mon, 23 Jun 2008 13:12:44 +0000 (+0200) Subject: fixed the tutorial X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=33ca95b143e3c667847d4edb2e0ffdd0ff4cd8c9;p=lectures%2Flatex.git fixed the tutorial --- diff --git a/solid_state_physics/tutorial/2_04.tex b/solid_state_physics/tutorial/2_04.tex index abaf2c4..d974e5f 100644 --- a/solid_state_physics/tutorial/2_04.tex +++ b/solid_state_physics/tutorial/2_04.tex @@ -66,7 +66,7 @@ Write down the total differential using the equalities $T=\left.\frac{\partial E}{\partial S}\right|_V$ and $-p=\left.\frac{\partial E}{\partial V}\right|_S$. - Use Legendre transformation to get the potentials + Apply Legendre transformation to the following potentials \begin{itemize} \item $H=E+pV$ (Enthalpy) \item $F=E-TS$ (Helmholtz free energy) @@ -115,7 +115,7 @@ thermal expansion cannot be described by rigorously harmonic crystals. volume $V$, the coefficient of thermal expansion $\alpha_V$ and the inverse bulk modulus (isothermal compressibility) $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$.\\ - $C_p=\left.\frac{\partial E}{\partial T}\right|_p$ is the heat capacity + $C_p=\left.\frac{\partial H}{\partial T}\right|_p$ is the heat capacity for constant pressure and $C_V=\left.\frac{\partial E}{\partial T}\right|_V$ is the heat capacity for constant volume.