From: hackbard Date: Tue, 30 May 2006 09:24:14 +0000 (+0000) Subject: more updates X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=34b57344dd865030cdc34c2594f60c72a46af7e3;p=lectures%2Flatex.git more updates --- diff --git a/nlsop/poster/nlsop_ibmm2006.tex b/nlsop/poster/nlsop_ibmm2006.tex index 0f7e742..43271f5 100644 --- a/nlsop/poster/nlsop_ibmm2006.tex +++ b/nlsop/poster/nlsop_ibmm2006.tex @@ -157,32 +157,16 @@ } \hfill }} -\hfill\mbox{}\\[1.cm] +\hfill\mbox{}\\[0.5cm] %\vspace*{1.3cm} % content, let's rock the columns \begin{lrbox}{\spalten} \parbox[t][\textheight]{1.3\textwidth}{% - \vspace*{0.2cm} + %\vspace*{0.2cm} \hfill % first column -%\begin{spalte} -% \begin{kasten} -% \begin{center} -% {\large{\color{blue}\underline{ABSTRACT}}} -% \end{center} -% -% abstract ... skip it -%High-dose ion implantation into solids usually leads to a disordered distribution of defects or precipitates with variable sizes. -%However materials exist for which high-dose ion irradiation at certain conditions results in periodically arranged, self-organized, nanometric amorphous inclusions. -%This has been observed for a number of ion/target combinations \cite{ommen,specht,ishimaru} which all have in common a largely reduced density of host atoms of the amorphous phase compared to the crystalline host lattice. -%A simple model explaining the phenomenon is introduced and realized in a Monte Carlo simulation code, which focuses on high dose carbon implantation into silicon. -%The simulation is able to reproduce the depth distribution observed by TEM and RBS. -%While first versions of the simulation \cite{me1,me2} just covered a limited depth region of the target in which the selforganization is observed, the new version of this simulation code presented here is able to model the whole depth region affected by the irradiation process, as can be seen in chapter 4. -%Based on simulation results a recipe is proposed for producing broad distributions of lamellar, ordered structures which, according to recent studies \cite{wong}, are the starting point for materials with high photoluminescence. -% \end{kasten} -% \begin{spalte} \begin{kasten} @@ -306,7 +290,8 @@ Three contributions to the amorphization process controlled by: \begin{center} \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps} \end{center} - + \end{kasten} + \begin{kasten} \subsection*{4.2 {\color{blue} Carbon distribution}} \begin{center} \includegraphics[width=11cm]{ac_cconc_ver2_e.eps} @@ -317,67 +302,46 @@ Three contributions to the amorphization process controlled by: % fourth column \begin{spalte} \begin{kasten} - \subsection*{4.3 {\color{blue} More structural information}} + \subsection*{4.3 {\color{blue} More structural/compositional + information}} \begin{center} - \includegraphics[width=8cm]{97_98_ng_e.eps} - \end{center} + \includegraphics[width=8cm]{97_98_ng_e.eps} \\ + Plane view of consecutive target layers $z$ and $z+1$ + \end{center} \end{kasten} \begin{kasten} - \section*{5 \hspace{0.1cm} {\color{blue}Broad distribution of - lamellar structure}} - \begin{itemize} - \item $10 \, at.\%$ constant carbon plateau - by multiple implantation steps at - energies between $180$ and $10 \, keV$ - \end{itemize} - \begin{center} - \includegraphics[width=6cm]{multiple_impl_cp.eps} - \end{center} + \subsection*{4.4 \hspace{0.1cm} {\color{blue} Broad distribution + of lamellar structure - the recipe}} + \subsubsection*{4.4.1 Constant carbon concentration} + \makebox[11cm]{% + \parbox[c]{6cm}{% + \includegraphics[width=6cm]{multiple_impl_cp_e.eps} + } + \parbox[c]{5cm}{% \begin{itemize} - \item foloowed by $2 \, MeV$ $C^+$ implantation + \item multiple implantation \\ steps + \item energies: $180$ - $10 \, keV$ \end{itemize} + $\Rightarrow$ nearly constant carbon distribution + ($10 \, at.\%$) + } + } + \subsubsection*{4.4.2 2 MeV C$^+$ implantation + step} \begin{center} - \includegraphics[width=10cm]{multiple_impl.eps} + \includegraphics[width=10cm]{multiple_impl_e.eps} \end{center} \end{kasten} - -\vspace{0.5cm} - \begin{kasten} - \section*{6 \hspace{0.1cm} {\color{red} \underline{Conclusions}}} - \begin{itemize} - \item 1 - - \item 2 - - \item 3 - - \item 4 - - \end{itemize} - \end{kasten} - -\vspace{0.5cm} \begin{kasten} - {\small - \begin{thebibliography}{9} - \bibitem{ommen} A. H. van Ommen, - Nucl. Instr. and Meth. B 39 (1989) 194. - \bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle, - Nucl. Instr. and Meth. B 84 (2000) 390. - \bibitem{ishimaru} M. Ishimaru, R. M. Dickerson, K. E. Sickafus, - Nucl. Instr. and Meth. B 166-167 (2000) 390. - \bibitem{me1} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, - B. Stritzker, - Comp. Mater. Sci. 33 (2005) 310. - \bibitem{me2} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, - B. Stritzker, - Nucl. Instr. and Meth. B 242 (2006) 679. - \bibitem{wong} Dihu Chen, Z. M. Liao, L. Wang, H. Z. Wang, Fuli Zhao, - W. Y. Cheung, S. P. Wong, - Opt. Mater. 23 (2003) 65. Opt. Mater. 23 (2003) 65. - \end{thebibliography} - } + \section*{5 \hspace{0.1cm} {\color{red} Conclusions}} + \begin{itemize} + \item selforganized nanometric precipitates by ion irradiation + \item model describing the seoforganization process + \item precipitate structures traceable by simulation + \item detailed structural/compositional information + \item recipe for broad distributions of lamellar structure + \end{itemize} \end{kasten} \end{spalte} }