From: hackbard Date: Tue, 12 Sep 2006 13:19:04 +0000 (+0000) Subject: (hopefully) final X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=66e63148efc76d3a233b77c6d7cbd96c6479f90f;p=lectures%2Flatex.git (hopefully) final --- diff --git a/nlsop/poster/nlsop_ibmm2006_ver2.tex b/nlsop/poster/nlsop_ibmm2006_ver2.tex index d03cc6a..bc6c1ac 100644 --- a/nlsop/poster/nlsop_ibmm2006_ver2.tex +++ b/nlsop/poster/nlsop_ibmm2006_ver2.tex @@ -6,6 +6,8 @@ \begin{document} +\hyphenation{pho-to-lu-mi-nescence} + % Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85 % und wieder nach 1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter- % grunds angenommen) @@ -19,7 +21,7 @@ \renewcommand{\columnfrac}{.31} % header -\vspace{-1cm} +\vspace{-1.5cm} \begin{header} \begin{minipage} {.13\textwidth} \includegraphics[height=11cm]{uni-logo.eps} @@ -41,7 +43,7 @@ \begin{poster} -\vspace{-1cm} +\vspace{-1.1cm} \begin{pcolumn} \begin{pbox} \section*{Motivation} @@ -49,36 +51,37 @@ Experimentally observerd seflorganisation process at high-dose carbon implantations under certain implantation conditions.} \begin{itemize} - \item Spherical and lamellar amorphous inclusions at the upper - a/c interface + \item Regularly spaced, nanometric spherical and lamellar + amorphous inclusions at the upper a/c interface \begin{center} \includegraphics[width=20cm]{k393abild1_e.eps} \end{center} - Cross section TEM image:\\ + Cross-section TEM bright-field image:\\ $180 \, keV$ $C^+ \rightarrow Si$, - $T=150 \, ^{\circ} \mathrm{C}$, + $T_i=150 \, ^{\circ} \mathrm{C}$, Dose: $4.3 \times 10^{17} \, cm^{-2}$\\ - black/white: crystalline/amorphous material\\ + Amorphous inclusions appear white on darker backgrounds\\ L: amorphous lamellae, S: spherical amorphous inclusions \item Carbon accumulation in amorphous volumes \begin{center} \includegraphics[width=20cm]{eftem.eps} \end{center} - Brightfield TEM and respective EFTEM image:\\ + Bright-field TEM image and respective EFTEM $C$ map:\\ $180 \, keV$ $C^+ \rightarrow Si$, - $T=200 \, ^{\circ} \mathrm{C}$, + $T_i=200 \, ^{\circ} \mathrm{C}$, Dose: $4.3 \times 10^{17} \, cm^{-2}$\\ yellow/blue: high/low concentrations of carbon \end{itemize} {\bf - Observed for a number of ion/target combinations for which the + Similarly ordered precipitate nanostructures also + observed for a number of ion/target combinations for which the material undergoes drastic density change upon amorphisation.}\\ {\scriptsize A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.\\ E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.\\ M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.} \end{pbox} - \vspace{-1cm} + \vspace{-1.5cm} \begin{pbox} \section*{Model} {\bf @@ -89,23 +92,26 @@ \includegraphics[width=20cm]{modell_ng_e.eps} \end{center} \begin{itemize} -\item supersaturation of $C$ in $c-Si$\\ - $\rightarrow$ {\bf carbon induced} nucleation of spherical +\item Supersaturation of $C$ in $c-Si$\\ + $\rightarrow$ {\bf Carbon induced} nucleation of spherical $SiC_x$-precipitates -\item high interfacial energy between $3C-SiC$ and $c-Si$\\ - $\rightarrow$ {\bf amourphous} precipitates +\item High interfacial energy between $3C-SiC$ and $c-Si$\\ + $\rightarrow$ {\bf Amourphous} precipitates \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\ - $\rightarrow$ {\bf lateral strain} (black arrows) -\item implantation range near surface\\ - $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component} -\item reduction of the carbon supersaturation in $c-Si$\\ - $\rightarrow$ {\bf carbon diffusion} into amorphous volumina + $\rightarrow$ {\bf Lateral strain} (black arrows) +\item Implantation range near surface\\ + $\rightarrow$ {\bf Ralaxation} of {\bf vertical strain component} +\item Reduction of the carbon supersaturation in $c-Si$\\ + $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina (white arrows) -\item remaining lateral strain\\ - $\rightarrow$ {\bf strain induced} lateral amorphisation +\item Remaining lateral strain\\ + $\rightarrow$ {\bf Strain enhanced} lateral amorphisation +\item Absence of crystalline neighbours (structural information)\\ + $\rightarrow$ {\bf Stabilisation} of amorphous inclusions + {\bf against recrystallisation} \end{itemize} \end{pbox} - \vspace{-1cm} + \vspace{-1.5cm} \begin{pbox} \section*{Simulation} \begin{minipage}[t]{0.5\textwidth} @@ -142,7 +148,8 @@ \section*{Simulation algorithm} {\bf The simulation algorithm consists of the following three parts looped - $s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:} + $s$ times corresponding to a dose + $D=s/(64\times64\times(3 \, nm)^2)$:} \subsection*{1. Amorphisation/Recrystallisation} \begin{itemize} \item random numbers distributed according to @@ -196,18 +203,21 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\ \end{itemize} \subsection*{3. Diffusion/Sputtering} \begin{itemize} - \item every $d_v$ steps transfer $d_r$ of the - carbon atoms of crystalline volumina to + \item every $d_v$ steps transfer of a fraction $d_r$ + of carbon atoms from crystalline volumina to an amorphous neighbour volume - \item do the sputter routine after $n$ steps - corresponding to $3 \, nm$ of substrat - removal + \item remove $3 \, nm$ surface layer after $n$ loops, + shift remaining cells $3 \, nm$ up and insert + an empty, crystalline $3 \, nm$ bottom layer \end{itemize} + \begin{picture}(0,0)(+40,-32) + \includegraphics[height=39.2cm]{loop-arrow.eps} + \end{picture}% {\bf Simulation parameters $d_v$, $d_r$ and $n$ control the diffusion and sputtering process.} \end{pbox} - \vspace{-1cm} + \vspace{-0.27cm} \begin{pbox} \section*{Comparison of experiment and simulation} \begin{center} @@ -217,11 +227,12 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\ \includegraphics[width=25cm]{dosis_entwicklung_ng_e_2-2.eps} \end{center} Simulation parameters:\\ - $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$. + $p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$, + $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$. \\[0.7cm]{\bf Conclusion:} \begin{itemize} - \item Essentially conforming formation and growth of the - continuous amorphous layer + \item Simulation in good agreement with experimentally observed + formation and growth of the continuous amorphous layer \item Lamellar precipitates and their evolution at the upper a/c interface with increasing dose is reproduced \end{itemize} @@ -243,9 +254,11 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\ implantation conditions between $8$ and $10 \, at. \%$ \end{itemize} - \end{minipage} + \end{minipage}% \begin{minipage}[t]{0.43\textwidth} \includegraphics[height=15cm]{97_98_ng_e.eps} + %\includegraphics[height=13cm]{gitter_e.eps} + %\includegraphics[height=15cm=]{test_foo.eps} \begin{itemize} \item Complementarily arranged and alternating sequence of layers with high and low amount of amorphous @@ -254,10 +267,9 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\ \end{itemize} \end{minipage} \end{pbox} - \vspace{-1cm} + \vspace{-1.5cm} \begin{pbox} - \section*{Recipe:\\ - Thick films of ordered lamellar structure} + \section*{Recipe for thick films of ordered lamellae} \begin{minipage}{0.33\textwidth} {\bf Prerequisites:}\\ Crystalline silicon target with a nearly constant carbon @@ -271,54 +283,64 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\ \end{minipage} {\bf Creation:} \begin{itemize} - \item multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$ + \item Multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$ $Si$ implantation - \item $T=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation + \item $T_i=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation \end{itemize} \vspace{1cm} - {\bf Stiring up:}\\[0.5cm] - 2nd $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ implantation step at + {\bf Stirring up:}\\[0.5cm] + $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at $150 \, ^{\circ} \mathrm{C}$ \begin{itemize} \item This does not significantly change the carbon concentration in the top $500 \, nm$ - \item Nearly constant energy loss in the affected depth region + \item Nearly constant nuclear energy loss in the top $700 \, nm$ + region \end{itemize} \vspace{1cm} {\bf Result:} \vspace{0.7cm} \begin{center} - \includegraphics[width=25cm]{multiple_impl_e.eps} + \includegraphics[width=25cm]{multiple_impl_e_ver2.eps} \end{center} \begin{itemize} \item Already ordered structures after $100 \times 10^6$ steps corresponding to a dose of $D=2.7 \times 10^{17} cm^{-2}$ \item More defined structures with increasing dose \end{itemize} - {\bf\color{blue} Starting point for materials showing strong\\ + {\bf\color{blue} Starting point for materials showing strong photoluminescence}\\ {\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.} \end{pbox} - \vspace{-1cm} + \vspace{-1.5cm} \begin{pbox} \section*{Conclusions} \begin{itemize} - \item Observation of self-organised nanometric + \item Observation of selforganised nanometric precipitates by ion irradiation - \item Model proposed describing the seoforganisation + \item Model proposed describing the selforganisation process - \item Model implemented to a Monte Carlo simulation code - \item Simulation is able to reproduce experimental - observations + \item Model implemented in a Monte Carlo simulation code \item Modelling of the complete depth region affected by the irradiation process + \item Simulation is able to reproduce entire amorphous + phase formation \item Precipitation process gets traceable by simulation \item Detailed structural/compositional information available by simulation - \item Recipe proposed for the formation of broad - distributions of lamellar structure + \item Recipe proposed for the formation of thick films + of lamellar structure \end{itemize} \end{pbox} + \vspace{-1.5cm} + \begin{pbox} + \section*{Publications} + {\scriptsize + F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, + B. Stritzker. Comp. Mater. Sci. 33 (2005) 310.\\ + F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, + B. Stritzker. Nucl. Instr. and Meth. B 242 (2006) 679.} + \end{pbox} \end{pcolumn} \end{poster}