From: hackbard Date: Wed, 8 Feb 2012 22:45:13 +0000 (+0100) Subject: outer product X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=69b350d82ab4382625484e3edbffd933f267aa50;p=lectures%2Flatex.git outer product --- diff --git a/physics_compact/math.tex b/physics_compact/math.tex index c182a96..83e13cb 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -47,10 +47,10 @@ Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vecto \begin{equation} \label{eq:complete} \vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow -\sum_i\vec{e}_i\cdot \vec{e}_i=\vec{1} +\sum_i\vec{e}_i\otimes \vec{e}_i=\vec{1} \end{equation} if the basis is complete. -Indeed, the very important identity representation by the outer product ($\cdot$) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. +Indeed, the very important identity representation by the outer product ($\otimes$, see \ref{math_app:product}) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. \section{Operators, matrices and determinants} diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 079d8d9..edee2ff 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -37,13 +37,14 @@ The addition of two vectors is called vector addition. \subsection{Dual space} \subsection{Inner and outer product} +\label{math_app:product} \begin{definition} The inner product ... \end{definition} \begin{definition} -The outer product ... +If $\vec{u}\in U$ and $\vec{v}\in V$ are vectors within the respective vector spaces and $V^{\dagger}$ is the dual space of $V$, the outer product of $\vec{u}$ and $\vec{v}$ is defined as the tensor product ... \end{definition} \section{Spherical coordinates}