From: hackbard <hackbard>
Date: Wed, 16 Aug 2006 15:22:14 +0000 (+0000)
Subject: ??
X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=76f9f198ef011e6a730e83d95fa3a173ccd3aa7b;p=lectures%2Flatex.git

??
---

diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex
index 09143b6..6d292e8 100644
--- a/posic/thesis/basics.tex
+++ b/posic/thesis/basics.tex
@@ -184,7 +184,7 @@ This is gradually done in the following.
 The $n$th component of the force acting on atom $i$ is
 \begin{eqnarray}
 F_n^i & = & - \frac{\partial}{\partial x_n} \sum_{j \neq i} V_{ij} \nonumber\\
- & = & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_ij f_A(r_{ij}) \big] + \nonumber\\
+ & = & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \big] + \nonumber\\
 & & + f_C(r_{ij}) \big[ \partial_{x_n^i} f_R(r_{ij}) + b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big)
 \end{eqnarray}
 The cutoff function $f_C$ derivated with repect to $x^i_n$ is