From: hackbard Date: Wed, 16 Aug 2006 15:22:14 +0000 (+0000) Subject: ?? X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=76f9f198ef011e6a730e83d95fa3a173ccd3aa7b;p=lectures%2Flatex.git ?? --- diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex index 09143b6..6d292e8 100644 --- a/posic/thesis/basics.tex +++ b/posic/thesis/basics.tex @@ -184,7 +184,7 @@ This is gradually done in the following. The $n$th component of the force acting on atom $i$ is \begin{eqnarray} F_n^i & = & - \frac{\partial}{\partial x_n} \sum_{j \neq i} V_{ij} \nonumber\\ - & = & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_ij f_A(r_{ij}) \big] + \nonumber\\ + & = & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \big] + \nonumber\\ & & + f_C(r_{ij}) \big[ \partial_{x_n^i} f_R(r_{ij}) + b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) \end{eqnarray} The cutoff function $f_C$ derivated with repect to $x^i_n$ is