From: hackbard Date: Thu, 15 May 2008 08:06:24 +0000 (+0200) Subject: alpha version X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=78de194c1fd19155c7e53fb2e20b46c0ab30444c;p=lectures%2Flatex.git alpha version --- diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex index 22e457b..aabf263 100644 --- a/posic/poster/emrs2008.tex +++ b/posic/poster/emrs2008.tex @@ -280,7 +280,7 @@ \end{minipage}\\[1cm] } \begin{minipage}{17cm} -\underline{$<100>$ dumbbell configuration} +\underline{\flq100\frq{} dumbbell configuration} \begin{itemize} \item $E_f=0.47$ eV \item Very often observed @@ -316,7 +316,7 @@ \item Initial configuration: $31\times31\times31$ unit cells Si \item Periodic boundary conditions \item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$ - \item Equilibration of $E_{kin}$ and $E_{pot}$ for 600 fs + \item Equilibration of $E_{kin}$ and $E_{pot}$ \end{itemize} }}}} \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ @@ -355,17 +355,17 @@ \ncline[linewidth=0.05]{-}{in3}{in-3} \end{pspicture} } - - {\bf Results and interpretation:}\\ + {\bf Results:}\\ Si-C and C-C pair correlation function:\\ - \includegraphics[width=24cm]{pc_si-c_c-c.eps} + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-c_c-c.eps} \begin{center} {\tiny {\bf Dashed vertical lines:} Further calculated C-Si distances - in the $<100>$ C-Si dumbbell interstitial configuration}\\[0.5cm] + in the \flq100\frq{} C-Si dumbbell interstitial configuration}\\[0.5cm] \end{center} Si-Si pair correlation function:\\ - \includegraphics[width=24cm]{pc_si-si.eps}\\ + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-si.eps}\\ + {\bf Interpretation:} {\small \begin{itemize} \item C-C peak at 0.15 nm similar to next neighbour distance of graphite @@ -374,34 +374,47 @@ (almost only for high C concentrations) \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\ (due to concatenated, differently oriented - $<100>$ dumbbell interstitials) + \flq100\frq{} dumbbell interstitials) \item Si-Si shows non-zero g(r) values around 0.31 nm - and decrease at regular distances\\ + and a decrease at regular distances\\ (no clear peak, interval of enhanced g(r) corresponds to C-C peak width) \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC - \item Low C concentration (i.e. $V_1$): The $<100>$ dumbbell configuration + \item Low C concentration (i.e. $V_1$): + The \flq100\frq{} dumbbell configuration \begin{itemize} \item is identified to stretch the Si-Si next neighbour distance to 0.3 nm \item is identified to contribute to the Si-C peak at 0.19 nm \item explains further C-Si peaks (dashed vertical lines) \end{itemize} + $\Rightarrow$ C atoms are first elements arranged at distances + expected for 3C-SiC\\ + $\Rightarrow$ C atoms pull the Si atoms into the right + configuration at a later stage \item High C concentration (i.e. $V_2$ and $V_3$): \begin{itemize} \item High amount of damage introduced into the system \item Short range order observed but almost no long range order \end{itemize} + $\Rightarrow$ Start of amorphous SiC-like phase formation\\ + $\Rightarrow$ Higher temperatures required for proper SiC formation \end{itemize} } \end{pbox} + %\vspace{-0.5cm} \begin{pbox} - \section*{Conclusions} + \section*{Conclusion} \begin{itemize} - \item there should be - \item 3 conclusions - \item at least! + \item \flq100\frq{} C-Si dumbbell interstitial configuration is observed + to be the energetically most favorable configuration + \item For low C concentrations C atoms introduced as differently + oriented C-Si dumbbells in c-Si are properly arranged + for 3C-SiC formation + \item For high C concentrations an amorphous SiC-like phase is observed + which suggests higher temperature simulation runs for proper + 3C-SiC formation \end{itemize} \end{pbox}