From: hackbard Date: Fri, 24 Feb 2006 12:12:51 +0000 (+0000) Subject: initial checkin X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=86e4cf6da6c62515cc87e0044f93313b5eb0cc72;p=lectures%2Flatex.git initial checkin --- diff --git a/posic/talks/posic_seminar.tex b/posic/talks/posic_seminar.tex new file mode 100644 index 0000000..07b19e8 --- /dev/null +++ b/posic/talks/posic_seminar.tex @@ -0,0 +1,122 @@ +\documentclass{beamer} + +\mode +{ +%\usetheme{Berkeley} +\usetheme{Warsaw} +%\usetheme{Singapore} +\setbeamercovered{transparent} +} +\usepackage{verbatim} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage{colortbl} +\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade} +%\usepackage{pstricks} +\usepackage{graphicx} +\graphicspath{{../img}} +\usepackage{hyperref} + +\begin{document} + +\title{the molecular dynamic simulation {\em posic}} +\subtitle{atomistic simulation of the precipitation process of silicon carbide in carbon doped silicon} +\author[F. Zirkelbach]{Frank Zirkelbach \\ \texttt{frank.zirkelbach@physik.uni-augsburg.de}} +\institute{ +experimental physics IV\\ +university of augsburg +} +\date{june 2006} + +\AtBeginSection[] +{ + \begin{frame} + \frametitle{agenda} + \tableofcontents[currentsection] + \end{frame} +} + +\begin{frame} + \titlepage +\end{frame} + +\begin{frame} + \frametitle{agenda} + \tableofcontents%[pausesections] +\end{frame} + +\section{introduction} + + \subsection{as things are now} + +\begin{frame} + \frametitle{introduction} + \framesubtitle{as things are now} + \begin{block}{precipitation process of $SiC$ in silicon} + \begin{itemize} + \item first steps:\\ + (investigated by high resolution electron microscopy) + \begin{itemize} + \item formation of $C-Si$-dumbbells on regular $c-Si$ lattice + sites + \item agglomeration into large clusters (embryos) + \end{itemize} + \item second step:\\ + (not accessible by experiment) + \begin{itemize} + \item cluster size reaches a radius of $2-4 \, nm$ + \item high interfacial energy due to the $SiC/Si$ lattice + mismatch (~$20 \, \%$) is overcome + \item precipitation process of $SiC$ + \end{itemize} + \end{itemize} + \end{block} +\end{frame} + + \subsection{motivation} + +\begin{frame} + \frametitle{introduction} + \framesubtitle{motivation} + \begin{block}{why studying the $SiC$ nucleation process} + \begin{itemize} + \item basic research + \item understanding the 2 steps of the precipitation process\\ + $\Rightarrow$ facilitation of the $SiC$ heteroepitaxy on $c-Si$\\ + $\Rightarrow$ suppress nucleation of $SiC$ in certain applications + \item $SiC$: most rapidly developed wide band gap semiconductor suitable + in high temperature, high frequency and high power applications + \end{itemize} + \end{block} +\end{frame} + +\begin{frame} + \frametitle{introduction} + \framesubtitle{motivation} + \begin{block}{why doing an atomistic simulation} + \begin{itemize} + \item precipitation process is not understood for the most part + \item monitor the atomic structures in early stages of the embryo formation + \item atomic rearrangement in the most critical second step\\ + (which is experimentally not accessible) + \item information about the atomic structure and interface of the + $SiC$ precipitates and the crystalline silicon\\ + (including stress fields) + \end{itemize} + \end{block} +\end{frame} + +\section{experimental observations} + +\section{simulation} + +\section{results} + +\section{summary \& outlook} + +\end{document} +