From: hackbard Date: Wed, 18 Jun 2008 06:42:27 +0000 (+0200) Subject: nearly finished tut 4 sol X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=a3dde75ad4e876fe90e17c7351dffa259058056c;p=lectures%2Flatex.git nearly finished tut 4 sol --- diff --git a/solid_state_physics/tutorial/2_04s.tex b/solid_state_physics/tutorial/2_04s.tex index 7391ad0..c115ade 100644 --- a/solid_state_physics/tutorial/2_04s.tex +++ b/solid_state_physics/tutorial/2_04s.tex @@ -224,16 +224,51 @@ \frac{\partial E}{\partial S} \left.\frac{\partial S}{\partial T}\right|_V= T\left.\frac{\partial S}{\partial T}\right|_p- - T\left.\frac{\partial S}{\partial T}\right|_V + T\left.\frac{\partial S}{\partial T}\right|_V= + T\left( + \left.\frac{\partial S}{\partial T}\right|_p- + \left.\frac{\partial S}{\partial T}\right|_V + \right) + \] + Using the equality + \[ + dS=\left.\frac{\partial S}{\partial T}\right|_p dT + +\left.\frac{\partial S}{\partial p}\right|_T dp + \Rightarrow + \left.\frac{\partial S}{\partial T}\right|_V= + \left.\frac{\partial S}{\partial T}\right|_p+ + \left.\frac{\partial S}{\partial p}\right|_T + \left.\frac{\partial p}{\partial T}\right|_V, + \] + the Maxwell relation + \[ + \left.\frac{\partial S}{\partial p}\right|_T= + -\left.\frac{\partial V}{\partial T}\right|_p + \] + and (for a process with constant volume) + \[ + 0=dV=\left.\frac{\partial V}{\partial T}\right|_p dT+ + \left.\frac{\partial V}{\partial p}\right|_T dp + \Rightarrow + \left.\frac{\partial p}{\partial T}\right|_V= + -\frac{\left.\frac{\partial V}{\partial T}\right|_p} + {\left.\frac{\partial V}{\partial p}\right|_T} + \] + we obtain: + \[ + C_p-C_V=T\left( + -\left.\frac{\partial S}{\partial p}\right|_T + \left.\frac{\partial p}{\partial T}\right|_V + \right)=T\left( + \left.\frac{\partial V}{\partial T}\right|_p + \left.\frac{\partial p}{\partial T}\right|_V + \right)=T\left( + \frac{\left.\left.\frac{\partial V}{\partial T}\right|_p\right.^2} + {-\left.\frac{\partial V}{\partial p}\right|_T} + \right)=T\left(\frac{V^2\alpha_V^2}{V\frac{1}{B}}\right)= + TVB\alpha_V^2 \] - Find an expression for $C_p-C_V$ in terms of temperature $T$, - volume $V$, the coefficient of thermal expansion $\alpha_V$ and - the inverse bulk modulus (isothermal compressibility) - $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$.\\ - $C_p=\left.\frac{\partial E}{\partial T}\right|_p$ is the heat capacity - for constant pressure and - $C_V=\left.\frac{\partial E}{\partial T}\right|_V$ is the heat capacity - for constant volume. + For a rigorously harmonic potential $C_p=C_V$. \end{enumerate} \end{document}