From: hackbard Date: Tue, 13 May 2008 17:30:58 +0000 (+0200) Subject: initial checkin of emrs 2008 poster X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b05b08319c0aedb26856e20f744a54215a196003;p=lectures%2Flatex.git initial checkin of emrs 2008 poster --- diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex new file mode 100644 index 0000000..5945eac --- /dev/null +++ b/posic/poster/emrs2008.tex @@ -0,0 +1,171 @@ +\documentclass[portrait,a0b,final]{a0poster} +\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color} +\usepackage{graphicx,amsmath,amssymb} +\graphicspath{{../img/}} +\usepackage[english,german]{babel} + +\input{a0poster-kh} + +\selectlanguage{english} + +\renewcommand\labelitemii{{\color{black}$\bullet$}} + +\begin{document} + +% Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85 +% und wieder nach 1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter- +% grunds angenommen) +% Achtung Werte unter .8 verbrauchen zu viel Tinte!!! + +%\background{.95 .95 1.}{.78 .78 1.}{0.05} +%\background{.50 .50 .50}{.85 .85 .85}{0.5} +\background{.40 .48 .71}{.99 .99 .99}{0.5} + +\newrgbcolor{si-yellow}{.6 .6 0} + +% Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite +\renewcommand{\columnfrac}{.31} + +% header +\begin{header} + \centerline{{\Huge \bfseries Molecular dynamics simulation + of defect formation and precipitation}} + \vspace*{0.5cm} + \centerline{{\Huge \bfseries in heavily carbon doped silicon}} + \vspace*{1cm} + \centerline{\huge\textsc {\underline{F.~Zirkelbach}$^1$, + J.~K.~N.~Lindner$^1$, + K.~Nordlund$^2$, B.~Stritzker$^1$}} + \vspace*{1cm} + \begin{center} + \begin{minipage}{.065\textwidth} + \includegraphics[height=5.5cm]{uni-logo.eps} + \end{minipage} + \begin{minipage}{.57\textwidth} + \centerline{\Large $^1$ Experimentalphysik IV, Institut f\"ur Physik, + Universit\"at Augsburg,} + \centerline{\Large Universit\"atsstr. 1, D-86135 Augsburg, Germany} + \end{minipage} + \begin{minipage} {.065\textwidth} + \includegraphics[height=5cm]{Lehrstuhl-Logo.eps} + \end{minipage} + \end{center} + \begin{center} + \begin{minipage}{.20\textwidth} + \includegraphics[height=5.5cm]{logo_eng.eps} + \end{minipage} + \begin{minipage}{.50\textwidth} + \centerline{\Large $^2$ Accelerator Laboratory, + Department of Physical Sciences, + University of Helsinki,} + \centerline{\Large Pietari Kalmink. 2, 00014 Helsinki, Finland} + \end{minipage} + \end{center} +\end{header} + +\begin{poster} + +\begin{pcolumn} + \begin{pbox} + \section*{Motivation} + {\bf Reasons for understanding the 3C-SiC precipitation process} + \begin{itemize} + \item Significant technological progress + in 3C-SiC wide band gap semiconductor thin film formation [1]. + \item New perspectives for processes relying upon prevention of + precipitation, e.g. fabrication of strained pseudomorphic + $\text{Si}_{1-y}\text{C}_y$ heterostructures [2]. + \end{itemize} + {\tiny + [1] J. H. Edgar, J. Mater. Res. 7 (1992) 235.}\\ + {\tiny + [2] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, + J. K. Watanabe, J. W. Mayer, J. Appl. Phys. 79 (1996) 637.} + \end{pbox} + \begin{pbox} + \section*{Crystalline silicon and cubic silicon carbide} + {\bf Lattice types and unit cells:} + \begin{itemize} + \item Crystalline silicon (c-Si) has diamond structure\\ + $\Rightarrow {\color{si-yellow}\bullet}$ and + ${\color{gray}\bullet}$ are Si atoms + \item Cubic silicon carbide (3C-SiC) has zincblende structure\\ + $\Rightarrow {\color{si-yellow}\bullet}$ are Si atoms, + ${\color{gray}\bullet}$ are C atoms + \end{itemize} + \begin{minipage}{15cm} + {\bf Lattice constants:} + \[ + 4a_{\text{c-Si}}\approx5a_{\text{3C-SiC}} + \] + {\bf Silicon density:} + \[ + \frac{n_{\text{3C-SiC}}}{n_{\text{c-Si}}}=97,66\,\% + \] + \end{minipage} + \begin{minipage}{10cm} + \includegraphics[width=10cm]{sic_unit_cell.eps} + \end{minipage} + \end{pbox} + \begin{pbox} + \section*{Supposed Si to 3C-SiC conversion} + {\bf Schematic of the conversion mechanism}\\\\ + \begin{minipage}{7.8cm} + \includegraphics[width=7.7cm]{sic_prec_seq_01.eps} + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{7.8cm} + \includegraphics[width=7.7cm]{sic_prec_seq_02.eps} + \end{minipage} + \hspace{0.6cm} + \begin{minipage}{7.8cm} + \includegraphics[width=7.7cm]{sic_prec_seq_03.eps} + \end{minipage} + \vspace{1cm} + \begin{enumerate} + \item Formation of C-Si dumbbells on regular c-Si lattice sites + \item Agglomeration into large clusters (embryos) + \item Precipitation of 3C-SiC + Creation of interstitials + \end{enumerate} + \vspace{1cm} + {\bf Experimental observations} [3] + \begin{itemize} + \item Minimal diameter of precipitation: 2 - 4 nm + \item Equal orientation of c-Si and 3C-SiC (hkl)-planes + \end{itemize} + {\tiny + [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27. + } + \end{pbox} + +\end{pcolumn} +\begin{pcolumn} + + \begin{pbox} + \section*{Simulation algorithm} + Hier die Simulation rein! + \end{pbox} + \begin{pbox} + \section*{Results} + Hier die Resultate! + \end{pbox} +\end{pcolumn} +\begin{pcolumn} + + \begin{pbox} + \section*{Structural/compositional information} + blabla + \end{pbox} + \begin{pbox} + \section*{Recipe for thick films of ordered lamellae} + blabla + \end{pbox} + \begin{pbox} + \section*{Conclusions} + Hier die Zusammenfassung + \end{pbox} + +\end{pcolumn} +\end{poster} +\end{document} +