From: hackbard Date: Mon, 11 Dec 2006 22:57:35 +0000 (+0000) Subject: small fixes X-Git-Url: https://hackdaworld.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=c5b7718aded7d3c9b0e7dc16ba14f7467d60b3d5;p=lectures%2Flatex.git small fixes --- diff --git a/posic/thesis/d_tersoff.tex b/posic/thesis/d_tersoff.tex index d1f0488..dbc798a 100644 --- a/posic/thesis/d_tersoff.tex +++ b/posic/thesis/d_tersoff.tex @@ -74,11 +74,11 @@ In the following all the necessary derivatives to calculate $\nabla_{{\bf r}_i} & & + f_C(r_{ji}) \big[ \nabla_{{\bf r}_i} f_R(r_{ji}) + b_{ji} \nabla_{{\bf r}_i} f_A(r_{ji}) + f_A(r_{ji}) \nabla_{{\bf r}_i} b_{ji} \big] \end{eqnarray} \begin{eqnarray} -\nabla_{{\bf r}_i} f_R(r_{ji}) & = & - A_{ji} \lambda_{ji} \frac{{\bf r}_{ji}}{r_{ji}} \exp(-\lambda_{ji} r_{ji}) = \nabla_{{\bf r}_i} f_R(r_{ij} \\ +\nabla_{{\bf r}_i} f_R(r_{ji}) & = & - A_{ji} \lambda_{ji} \frac{{\bf r}_{ji}}{r_{ji}} \exp(-\lambda_{ji} r_{ji}) = \nabla_{{\bf r}_i} f_R(r_{ij}) \\ \nabla_{{\bf r}_i} f_A(r_{ji}) & = & + B_{ji} \mu_{ji} \frac{{\bf r}_{ji}}{r_{ji}} \exp(-\mu_{ji} r_{ji}) = \nabla_{{\bf r}_i} f_A(r_{ij}) \end{eqnarray} \begin{equation} -\nabla_{{\bf r}_i} f_C(r_{ij}) = f_C(r_{ij}) = \left\{ +\nabla_{{\bf r}_i} f_C(r_{ij}) = \nabla_{{\bf r}_i} f_C(r_{ij}) = \left\{ \begin{array}{ll} - \frac{1}{2} \sin \Big( \frac{\pi(r_{ji}-R_{ji})}{S_{ji}-R_{ji}} \Big) \frac{\pi}{S_{ji}-R_{ji}} \frac{{\bf r}_{ji}}{r_{ji}}, & R_{ji} < r_{ji} < S_{ji} \\ 0, & \textrm{else.} @@ -99,9 +99,9 @@ In the following all the necessary derivatives to calculate $\nabla_{{\bf r}_i} \begin{eqnarray} \nabla_{{\bf r}_i} V_{jk} & = & f_C(r_{jk}) f_A(r_{jk}) \nabla_{{\bf r}_i} b_{jk} \\ -\nabla_{{\bf r}_i} b_{jk} & = & - \frac{\chi_{ji}}{2} (1+\beta^{n_j} \zeta_{jk}^{n_j})^{-\frac{1}{2n_j}-1} \beta^{n_j} \zeta_{jk}^{n_j-1} \nabla_{{\bf r}_i} \zeta_{jk} \\ +\nabla_{{\bf r}_i} b_{jk} & = & - \frac{\chi_{jk}}{2} (1+\beta^{n_j} \zeta_{jk}^{n_j})^{-\frac{1}{2n_j}-1} \beta^{n_j} \zeta_{jk}^{n_j-1} \nabla_{{\bf r}_i} \zeta_{jk} \\ \nabla_{{\bf r}_i} \zeta_{jk} & = & \sum_{l \neq j,k} \big( g(\theta_{jkl}) \nabla_{{\bf r}_i} f_C(r_{jl}) + f_C(r_{jl}) \nabla_{{\bf r}_i} g(\theta_{jkp}) \big) \nonumber \\ - & = & f_C(r_{ji}) \nabla_{{\bf r}_i} g(\theta_{jki}) + g(\theta_jki) \nabla_{{\bf r}_i} f_C(r_{ji}) \\ + & = & f_C(r_{ji}) \nabla_{{\bf r}_i} g(\theta_{jki}) + g(\theta_{jki}) \nabla_{{\bf r}_i} f_C(r_{ji}) \\ \nabla_{{\bf r}_i} g(\theta_{jki}) & = & - \frac{2(h_j-\cos\theta_{jki})c_j^2}{\big[d_j^2 + (h_j - \cos\theta_{jki})^2\big]^2} \nabla_{{\bf r}_i} (\cos\theta_{jki}) \\ \nabla_{{\bf r}_i} \cos \theta_{jki} & = & \nabla_{{\bf r}_i} \Big( \frac{{\bf r}_{jk} {\bf r}_{ji}}{r_{jk} r_{ji}} \Big) \nonumber \\ & = & \frac{1}{r_{jk} r_{ji}} {\bf r}_{jk} - \frac{\cos\theta_{jki}}{r_{ji}^2} {\bf r}_{ji}