From 33ca95b143e3c667847d4edb2e0ffdd0ff4cd8c9 Mon Sep 17 00:00:00 2001 From: hackbard Date: Mon, 23 Jun 2008 15:12:44 +0200 Subject: [PATCH] fixed the tutorial --- solid_state_physics/tutorial/2_04.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/solid_state_physics/tutorial/2_04.tex b/solid_state_physics/tutorial/2_04.tex index abaf2c4..d974e5f 100644 --- a/solid_state_physics/tutorial/2_04.tex +++ b/solid_state_physics/tutorial/2_04.tex @@ -66,7 +66,7 @@ Write down the total differential using the equalities $T=\left.\frac{\partial E}{\partial S}\right|_V$ and $-p=\left.\frac{\partial E}{\partial V}\right|_S$. - Use Legendre transformation to get the potentials + Apply Legendre transformation to the following potentials \begin{itemize} \item $H=E+pV$ (Enthalpy) \item $F=E-TS$ (Helmholtz free energy) @@ -115,7 +115,7 @@ thermal expansion cannot be described by rigorously harmonic crystals. volume $V$, the coefficient of thermal expansion $\alpha_V$ and the inverse bulk modulus (isothermal compressibility) $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$.\\ - $C_p=\left.\frac{\partial E}{\partial T}\right|_p$ is the heat capacity + $C_p=\left.\frac{\partial H}{\partial T}\right|_p$ is the heat capacity for constant pressure and $C_V=\left.\frac{\partial E}{\partial T}\right|_V$ is the heat capacity for constant volume. -- 2.39.2