From caa63cd54523ca88928d8edc017f3f1a2fd0afd6 Mon Sep 17 00:00:00 2001 From: hackbard Date: Mon, 22 Oct 2007 23:31:03 +0200 Subject: [PATCH] small fixes --- solid_state_physics/tutorial/1_01.tex | 2 +- solid_state_physics/tutorial/1_01s.tex | 31 +++++++++++++++++++------- 2 files changed, 24 insertions(+), 9 deletions(-) diff --git a/solid_state_physics/tutorial/1_01.tex b/solid_state_physics/tutorial/1_01.tex index b1fdabf..5510a4f 100644 --- a/solid_state_physics/tutorial/1_01.tex +++ b/solid_state_physics/tutorial/1_01.tex @@ -65,7 +65,7 @@ Using these approximations it is sufficient to consider a single electron locate Since most materials condense into almost perfect periodic arrays the periodicity should also hold for the potential style. Within this tutorial even the periodic potential is simplified. -Consider a single particle (mass $m$) enclosed in a box (side length $L=\mathcal{V}^{1/3}$) where the potential is constant ($V_0$) inside the box and infinite at the surface. +Consider a single particle (mass $m$) enclosed in a box (side length $L=\mathcal{V}^{1/3}$) where the potential is zero inside the box and infinite at the surface. \begin{enumerate} \item Write down the Schr"odinger equation and boundary conditions diff --git a/solid_state_physics/tutorial/1_01s.tex b/solid_state_physics/tutorial/1_01s.tex index 57d822d..83391bb 100644 --- a/solid_state_physics/tutorial/1_01s.tex +++ b/solid_state_physics/tutorial/1_01s.tex @@ -123,9 +123,9 @@ \] \item $n_x,n_y,n_z=1,2,3\ldots$\\ Allowed $k_{x,y,z}$ values located in positive octant only. - \begin{center} + \begin{flushleft} \includegraphics[width=10cm]{feg_kvals.eps} - \end{center} + \end{flushleft} \end{enumerate} @@ -139,21 +139,36 @@ Convention: Prove: \[ V_{real}=a_1(a_2 \times a_3) +\]\[ +b_1=\frac{2\pi(a_2 \times a_3)}{a_1(a_2 \times a_3)} +\]\[ +b_2=\frac{2\pi(a_3 \times a_1)}{a_1(a_2 \times a_3)} +\]\[ +b_3=\frac{2\pi(a_1 \times a_2)}{a_1(a_2 \times a_3)} \] \[ -V_{rec}=b_1 ( b_2 \times b_3) - =\frac{(2\pi)^3}{(a_1(a_2 \times a_3))^3} (a_2 \times a_3) [ +V_{rec}=b_1 ( b_2 \times b_3)= + \frac{(2\pi)^3}{(a_1(a_2 \times a_3))^3} (a_2 \times a_3) [ (a_3 \times a_1) \times (a_1 \times a_2) ] \] \[ -\textrm{hint 1: } +\textrm{Hint 1: } (a_3 \times a_1) \times (a_1 \times a_2) = -a_1((a_3 \times a_1)a_2) - a_2((a_3 \times a_1)a_1) = -a_1((a_3 \times a_1)a_2) +a_1((a_3 \times a_1)a_2) - \underbrace{a_2((a_3 \times a_1)a_1)}_{=0} \] \[ \Rightarrow V_{rec}= \frac{(2\pi)^3}{(a_1(a_2 \times a_3))^3} -(a_2 \times a_3) (a_1(a_3 \times a_1) a_2) +(a_2 \times a_3) (a_1((a_3 \times a_1) a_2)) +\] +\[ +\textrm{Hint 2: } +(a_2 \times a_3) (a_1((a_3 \times a_1) a_2)) = +(a_2 \times a_3) (a_1((a_2 \times a_3) a_1)) = +(a_1 (a_2 \times a_3))^2 +\] +\[ +\Rightarrow V_{rec}=\frac{(2\pi)^3}{a_1(a_2 \times a_3)}= +\frac{(2\pi)^3}{V_{real}} \] \end{document} -- 2.39.2