]> hackdaworld.org Git - physik/posic.git/blob - potentials/tersoff.c
first simple atom match code
[physik/posic.git] / potentials / tersoff.c
1 /*
2  * tersoff.c - tersoff potential
3  *
4  * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
5  *
6  */
7
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <fcntl.h>
15 #include <unistd.h>
16 #include <math.h>
17
18 #include "../moldyn.h"
19 #include "../math/math.h"
20 #include "tersoff.h"
21
22 /* create mixed terms from parameters and set them */
23 int tersoff_mult_set_params(t_moldyn *moldyn,int element1,int element2) {
24
25         t_tersoff_mult_params *p;
26
27         // set cutoff before parameters (actually only necessary for some pots)
28         if(moldyn->cutoff==0.0) {
29                 printf("[tersoff] WARNING: no cutoff!\n");
30                 return -1;
31         }
32
33         /* alloc mem for potential parameters */
34          moldyn->pot_params=malloc(sizeof(t_tersoff_mult_params));
35          if(moldyn->pot_params==NULL) {
36                 perror("[tersoff] pot params alloc");
37                 return -1;
38         }
39
40         /* these are now tersoff parameters */
41         p=moldyn->pot_params;
42
43         // only 1 combination by now :p
44         switch(element1) {
45                 case SI:
46                         /* type: silicon */
47                         p->S[0]=TM_S_SI;
48                         p->R[0]=TM_R_SI;
49                         p->A[0]=TM_A_SI;
50                         p->B[0]=TM_B_SI;
51                         p->lambda[0]=TM_LAMBDA_SI;
52                         p->mu[0]=TM_MU_SI;
53                         p->beta[0]=TM_BETA_SI;
54                         p->n[0]=TM_N_SI;
55                         p->c[0]=TM_C_SI;
56                         p->d[0]=TM_D_SI;
57                         p->h[0]=TM_H_SI;
58                         switch(element2) {
59                                 case C:
60                                         p->chi=TM_CHI_SIC;
61                                         break;
62                                 default:
63                                         printf("[tersoff] WARNING: element2\n");
64                                         return -1;
65                         }
66                         break;
67                 default:
68                         printf("[tersoff] WARNING: element1\n");
69                         return -1;
70         }
71
72         switch(element2) {
73                 case C:
74                         /* type carbon */
75                         p->S[1]=TM_S_C;
76                         p->R[1]=TM_R_C;
77                         p->A[1]=TM_A_C;
78                         p->B[1]=TM_B_C;
79                         p->lambda[1]=TM_LAMBDA_C;
80                         p->mu[1]=TM_MU_C;
81                         p->beta[1]=TM_BETA_C;
82                         p->n[1]=TM_N_C;
83                         p->c[1]=TM_C_C;
84                         p->d[1]=TM_D_C;
85                         p->h[1]=TM_H_C;
86                         break;
87                 default:
88                         printf("[tersoff] WARNING: element1\n");
89                         return -1;
90         }
91
92         printf("[tersoff] parameter completion\n");
93         p->S2[0]=p->S[0]*p->S[0];
94         p->S2[1]=p->S[1]*p->S[1];
95         p->Smixed=sqrt(p->S[0]*p->S[1]);
96         p->S2mixed=p->Smixed*p->Smixed;
97         p->Rmixed=sqrt(p->R[0]*p->R[1]);
98         p->Amixed=sqrt(p->A[0]*p->A[1]);
99         p->Bmixed=sqrt(p->B[0]*p->B[1]);
100         p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]);
101         p->mu_m=0.5*(p->mu[0]+p->mu[1]);
102
103         printf("[tersoff] mult parameter info:\n");
104         printf("  S (A)  | %f | %f | %f\n",p->S[0],p->S[1],p->Smixed);
105         printf("  R (A)  | %f | %f | %f\n",p->R[0],p->R[1],p->Rmixed);
106         printf("  A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV);
107         printf("  B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV);
108         printf("  lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1],
109                                           p->lambda_m);
110         printf("  mu     | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m);
111         printf("  beta   | %.10f | %.10f\n",p->beta[0],p->beta[1]);
112         printf("  n      | %f | %f\n",p->n[0],p->n[1]);
113         printf("  c      | %f | %f\n",p->c[0],p->c[1]);
114         printf("  d      | %f | %f\n",p->d[0],p->d[1]);
115         printf("  h      | %f | %f\n",p->h[0],p->h[1]);
116         printf("  chi    | %f \n",p->chi);
117
118         return 0;
119 }
120
121 /* tersoff 1 body part */
122 int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) {
123
124         int brand;
125         t_tersoff_mult_params *params;
126         t_tersoff_exchange *exchange;
127         
128         brand=ai->brand;
129         params=moldyn->pot_params;
130         exchange=&(params->exchange);
131
132         /*
133          * simple: point constant parameters only depending on atom i to
134          *         their right values
135          */
136
137         exchange->beta_i=&(params->beta[brand]);
138         exchange->n_i=&(params->n[brand]);
139         exchange->c_i=&(params->c[brand]);
140         exchange->d_i=&(params->d[brand]);
141         exchange->h_i=&(params->h[brand]);
142
143         exchange->betaini=pow(*(exchange->beta_i),*(exchange->n_i));
144         exchange->ci2=params->c[brand]*params->c[brand];
145         exchange->di2=params->d[brand]*params->d[brand];
146         exchange->ci2di2=exchange->ci2/exchange->di2;
147
148         return 0;
149 }
150         
151 /* tersoff 2 body part */
152 int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
153
154         t_tersoff_mult_params *params;
155         t_3dvec dist_ij,force;
156         double d_ij,d_ij2;
157         double A,R,S,S2,lambda;
158         double f_r,df_r;
159         double f_c,df_c;
160         int brand;
161         double s_r;
162         double arg;
163         double energy;
164
165         printf("WARNING! - tersoff_mult_2bp is obsolete.\n");
166         printf("WARNING! - repulsive part handled in 3bp/j2 routine.\n");
167
168         /* use newtons third law */
169         if(ai<aj) return 0;
170
171         params=moldyn->pot_params;
172         brand=aj->brand;
173
174         /* determine cutoff square */
175         if(brand==ai->brand)
176                 S2=params->S2[brand];
177         else
178                 S2=params->S2mixed;
179
180         /* dist_ij, d_ij2 */
181         v3_sub(&dist_ij,&(aj->r),&(ai->r));
182         if(bc) check_per_bound(moldyn,&dist_ij);
183         d_ij2=v3_absolute_square(&dist_ij);
184
185         /* if d_ij2 > S2 => no force & potential energy contribution */
186         if(d_ij2>S2) {
187                 return 0;
188         }
189
190         /* now we will need the distance */
191         d_ij=sqrt(d_ij2);
192
193         /* more constants */
194         if(brand==ai->brand) {
195                 S=params->S[brand];
196                 R=params->R[brand];
197                 A=params->A[brand];
198                 lambda=params->lambda[brand];
199         }
200         else {
201                 S=params->Smixed;
202                 R=params->Rmixed;
203                 A=params->Amixed;
204                 lambda=params->lambda_m;
205         }
206
207         /* f_r_ij, df_r_ij */
208         f_r=A*exp(-lambda*d_ij);
209         df_r=lambda*f_r/d_ij;
210
211         /* f_c, df_c */
212         if(d_ij<R) {
213                 f_c=1.0;
214                 df_c=0.0;
215                 v3_scale(&force,&dist_ij,-df_r);
216         }
217         else {
218                 s_r=S-R;
219                 arg=M_PI*(d_ij-R)/s_r;
220                 f_c=0.5+0.5*cos(arg);
221                 df_c=0.5*sin(arg)*(M_PI/(s_r*d_ij));
222                 v3_scale(&force,&dist_ij,-df_c*f_r-df_r*f_c);
223         }
224
225         /* add forces */
226         v3_add(&(ai->f),&(ai->f),&force);
227         v3_scale(&force,&force,-1.0); // reason: dri rij = - drj rij
228         v3_add(&(aj->f),&(aj->f),&force);
229
230 #ifdef DEBUG
231         if((ai==&(moldyn->atom[0]))|(aj==&(moldyn->atom[0]))) {
232                 printf("force 2bp: [%d %d]\n",ai->tag,aj->tag);
233                 printf("adding %f %f %f\n",force.x,force.y,force.z);
234                 if(ai==&(moldyn->atom[0]))
235                         printf("total i: %f %f %f\n",ai->f.x,ai->f.y,ai->f.z);
236                 if(aj==&(moldyn->atom[0]))
237                         printf("total j: %f %f %f\n",aj->f.x,aj->f.y,aj->f.z);
238         }
239 #endif
240
241         /* virial */
242         virial_calc(aj,&force,&dist_ij);
243
244         /* energy 2bp contribution */
245         energy=f_r*f_c;
246         moldyn->energy+=energy;
247         ai->e+=0.5*energy;
248         aj->e+=0.5*energy;
249
250         return 0;
251 }
252
253 /* tersoff 3 body potential function (first ij loop) */
254 int tersoff_mult_3bp_j1(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
255
256         t_tersoff_mult_params *params;
257         t_tersoff_exchange *exchange;
258         unsigned char brand;
259         double S2;
260         t_3dvec dist_ij;
261         double d_ij2,d_ij;
262
263         params=moldyn->pot_params;
264         exchange=&(params->exchange);
265
266         /* reset zeta sum */
267         exchange->zeta_ij=0.0;
268
269         /*
270          * set ij depending values
271          */
272
273         brand=ai->brand;
274         
275         if(brand==aj->brand)
276                 S2=params->S2[brand];
277         else
278                 S2=params->S2mixed;
279
280         /* dist_ij, d_ij2 */
281         v3_sub(&dist_ij,&(aj->r),&(ai->r));
282         if(bc) check_per_bound(moldyn,&dist_ij);
283         d_ij2=v3_absolute_square(&dist_ij);
284
285         /* if d_ij2 > S2 => no force & potential energy contribution */
286         if(d_ij2>S2) {
287                 moldyn->run3bp=0;
288                 return 0;
289         }
290
291         /* d_ij */
292         d_ij=sqrt(d_ij2);
293
294         /* store values */
295         exchange->dist_ij=dist_ij;
296         exchange->d_ij2=d_ij2;
297         exchange->d_ij=d_ij;
298
299         /* reset k counter for first k loop */
300         exchange->kcount=0;
301                 
302         return 0;
303 }
304
305 /* tersoff 3 body potential function (first k loop) */
306 int tersoff_mult_3bp_k1(t_moldyn *moldyn,
307                         t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
308
309         t_tersoff_mult_params *params;
310         t_tersoff_exchange *exchange;
311         unsigned char brand;
312         double R,S,S2;
313         t_3dvec dist_ij,dist_ik;
314         double d_ik2,d_ik,d_ij;
315         double cos_theta,h_cos,d2_h_cos2,frac,g,dg,s_r,arg;
316         double f_c_ik,df_c_ik;
317         int kcount;
318
319         params=moldyn->pot_params;
320         exchange=&(params->exchange);
321         kcount=exchange->kcount;
322
323         if(kcount>TERSOFF_MAXN) {
324                 printf("FATAL: neighbours = %d\n",kcount);
325                 printf("  -> %d %d %d\n",ai->tag,aj->tag,ak->tag);
326         }
327
328         /* ik constants */
329         brand=ai->brand;
330         if(brand==ak->brand) {
331                 R=params->R[brand];
332                 S=params->S[brand];
333                 S2=params->S2[brand];
334         }
335         else {
336                 R=params->Rmixed;
337                 S=params->Smixed;
338                 S2=params->S2mixed;
339         }
340
341         /* dist_ik, d_ik2 */
342         v3_sub(&dist_ik,&(ak->r),&(ai->r));
343         if(bc) check_per_bound(moldyn,&dist_ik);
344         d_ik2=v3_absolute_square(&dist_ik);
345
346         /* store data for second k loop */
347         exchange->dist_ik[kcount]=dist_ik;
348         exchange->d_ik2[kcount]=d_ik2;
349
350         /* return if not within cutoff */
351         if(d_ik2>S2) {
352                 exchange->kcount++;
353                 return 0;
354         }
355
356         /* d_ik */
357         d_ik=sqrt(d_ik2);
358
359         /* dist_ij, d_ij */
360         dist_ij=exchange->dist_ij;
361         d_ij=exchange->d_ij;
362
363         /* cos theta */
364         cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik);
365
366         /* g_ijk */
367         h_cos=*(exchange->h_i)-cos_theta;
368         d2_h_cos2=exchange->di2+(h_cos*h_cos);
369         frac=exchange->ci2/d2_h_cos2;
370         g=1.0+exchange->ci2di2-frac;
371         dg=-2.0*frac*h_cos/d2_h_cos2;
372
373         /* zeta sum += f_c_ik * g_ijk */
374         if(d_ik<=R) {
375                 exchange->zeta_ij+=g;
376                 f_c_ik=1.0;
377                 df_c_ik=0.0;
378         }
379         else {
380                 s_r=S-R;
381                 arg=M_PI*(d_ik-R)/s_r;
382                 f_c_ik=0.5+0.5*cos(arg);
383                 df_c_ik=0.5*sin(arg)*(M_PI/(s_r*d_ik));
384                 exchange->zeta_ij+=f_c_ik*g;
385         }
386
387 #ifdef DEBUG
388         if((ai==&(moldyn->atom[0]))|
389            (aj==&(moldyn->atom[864]))|
390            (ak==&(moldyn->atom[1003]))) {
391                 printf(" -> %f %f %f\n",exchange->ci2di2,frac,h_cos);
392         }
393 #endif
394
395         /* store even more data for second k loop */
396         exchange->g[kcount]=g;
397         exchange->dg[kcount]=dg;
398         exchange->d_ik[kcount]=d_ik;
399         exchange->cos_theta[kcount]=cos_theta;
400         exchange->f_c_ik[kcount]=f_c_ik;
401         exchange->df_c_ik[kcount]=df_c_ik;
402
403         /* increase k counter */
404         exchange->kcount++;
405
406         return 0;
407 }
408
409 int tersoff_mult_3bp_j2(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
410
411         t_tersoff_mult_params *params;
412         t_tersoff_exchange *exchange;
413         t_3dvec force;
414         double f_a,df_a,b,db,f_c,df_c;
415         double f_r,df_r;
416         double scale;
417         double mu,B,chi;
418         double lambda,A;
419         double d_ij;
420         unsigned char brand;
421         double ni,tmp;
422         double S,R,s_r,arg;
423         double energy;
424
425         params=moldyn->pot_params;
426         exchange=&(params->exchange);
427
428         brand=aj->brand;
429         if(brand==ai->brand) {
430                 S=params->S[brand];
431                 R=params->R[brand];
432                 B=params->B[brand];
433                 A=params->A[brand];
434                 mu=params->mu[brand];
435                 lambda=params->lambda[brand];
436                 chi=1.0;
437         }
438         else {
439                 S=params->Smixed;
440                 R=params->Rmixed;
441                 B=params->Bmixed;
442                 A=params->Amixed;
443                 mu=params->mu_m;
444                 lambda=params->lambda_m;
445                 chi=params->chi;
446         }
447
448         d_ij=exchange->d_ij;
449
450         /* f_c, df_c */
451         if(d_ij<R) {
452                 f_c=1.0;
453                 df_c=0.0;
454         }
455         else {
456                 s_r=S-R;
457                 arg=M_PI*(d_ij-R)/s_r;
458                 f_c=0.5+0.5*cos(arg);
459                 df_c=0.5*sin(arg)*(M_PI/(s_r*d_ij));
460         }
461
462         /* f_a, df_a */
463         f_a=-B*exp(-mu*d_ij);
464         df_a=mu*f_a/d_ij;
465
466         /* f_r, df_r */
467         f_r=A*exp(-lambda*d_ij);
468         df_r=lambda*f_r/d_ij;
469
470         /* b, db */
471         if(exchange->zeta_ij==0.0) {
472                 b=chi;
473                 db=0.0;
474         }
475         else {
476                 ni=*(exchange->n_i);
477                 tmp=exchange->betaini*pow(exchange->zeta_ij,ni-1.0);
478                 b=(1.0+exchange->zeta_ij*tmp);
479                 db=chi*pow(b,-1.0/(2.0*ni)-1.0);
480                 b=db*b;
481                 db*=-0.5*tmp;
482         }
483
484         /* force contribution */
485         scale=-0.5*(f_c*(df_r+b*df_a)+df_c*(f_r+b*df_a));
486         v3_scale(&force,&(exchange->dist_ij),scale);
487         v3_add(&(ai->f),&(ai->f),&force);
488         v3_scale(&force,&force,-1.0); // dri rij = - drj rij
489         v3_add(&(aj->f),&(aj->f),&force);
490
491 #ifdef DEBUG
492         if((ai==&(moldyn->atom[0]))|(aj==&(moldyn->atom[0]))) {
493                 printf("force 3bp (j2): [%d %d sum]\n",ai->tag,aj->tag);
494                 printf("adding %f %f %f\n",force.x,force.y,force.z);
495                 if(ai==&(moldyn->atom[0]))
496                         printf("total i: %f %f %f\n",ai->f.x,ai->f.y,ai->f.z);
497                 if(aj==&(moldyn->atom[0]))
498                         printf("total j: %f %f %f\n",aj->f.x,aj->f.y,aj->f.z);
499                 printf("energy: %f = %f %f %f %f\n",0.5*f_c*(b*f_a+f_r),
500                                                     f_c,b,f_a,f_r);
501                 printf("        %f %f %f\n",exchange->zeta_ij,.0,.0);
502         }
503 #endif
504
505         /* virial */
506         virial_calc(aj,&force,&(exchange->dist_ij));
507
508         /* dzeta prefactor = - 0.5 f_c f_a db */
509         exchange->pre_dzeta=-0.5*f_a*f_c*db;
510
511         /* energy contribution */
512         energy=0.5*f_c*(b*f_a+f_r);
513         moldyn->energy+=energy;
514         ai->e+=energy;
515
516         /* reset k counter for second k loop */
517         exchange->kcount=0;
518                 
519         return 0;
520 }
521
522 /* tersoff 3 body potential function (second k loop) */
523 int tersoff_mult_3bp_k2(t_moldyn *moldyn,
524                         t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
525
526         t_tersoff_mult_params *params;
527         t_tersoff_exchange *exchange;
528         int kcount;
529         t_3dvec dist_ik,dist_ij;
530         double d_ik2,d_ik,d_ij2,d_ij;
531         unsigned char brand;
532         double S2;
533         double g,dg,cos_theta;
534         double pre_dzeta;
535         double f_c_ik,df_c_ik;
536         double dijdik_inv,fcdg,dfcg;
537         t_3dvec dcosdri,dcosdrj,dcosdrk;
538         t_3dvec force,tmp;
539
540         params=moldyn->pot_params;
541         exchange=&(params->exchange);
542         kcount=exchange->kcount;
543
544         if(kcount>TERSOFF_MAXN)
545                 printf("FATAL: neighbours!\n");
546
547         /* d_ik2 */
548         d_ik2=exchange->d_ik2[kcount];
549
550         brand=ak->brand;
551         if(brand==ai->brand)
552                 S2=params->S2[brand];
553         else
554                 S2=params->S2mixed;
555
556         /* return if d_ik > S */
557         if(d_ik2>S2) {
558                 exchange->kcount++;
559                 return 0;
560         }
561
562         /* prefactor dzeta */
563         pre_dzeta=exchange->pre_dzeta;
564
565         /* dist_ik, d_ik */
566         dist_ik=exchange->dist_ik[kcount];
567         d_ik=exchange->d_ik[kcount];
568
569         /* f_c_ik, df_c_ik */
570         f_c_ik=exchange->f_c_ik[kcount];
571         df_c_ik=exchange->df_c_ik[kcount];
572
573         /* dist_ij, d_ij2, d_ij */
574         dist_ij=exchange->dist_ij;
575         d_ij2=exchange->d_ij2;
576         d_ij=exchange->d_ij;
577
578         /* g, dg, cos_theta */
579         g=exchange->g[kcount];
580         dg=exchange->dg[kcount];
581         cos_theta=exchange->cos_theta[kcount];
582
583         /* cos_theta derivatives wrt i,j,k */
584         dijdik_inv=1.0/(d_ij*d_ik);
585         v3_scale(&dcosdrj,&dist_ik,dijdik_inv);
586         v3_scale(&tmp,&dist_ij,-cos_theta/d_ij2);
587         v3_add(&dcosdrj,&dcosdrj,&tmp);
588         v3_scale(&dcosdrk,&dist_ij,dijdik_inv);
589         v3_scale(&tmp,&dist_ik,-cos_theta/d_ik2);
590         v3_add(&dcosdrk,&dcosdrk,&tmp);
591         v3_add(&dcosdri,&dcosdrj,&dcosdrk);
592         v3_scale(&dcosdri,&dcosdri,-1.0);
593
594         /* f_c_ik * dg, df_c_ik * g */
595         fcdg=f_c_ik*dg;
596         dfcg=df_c_ik*g;
597
598         /* derivative wrt i */
599         v3_scale(&force,&dist_ik,dfcg);
600         v3_scale(&tmp,&dcosdri,fcdg);
601         v3_add(&force,&force,&tmp);
602         v3_scale(&force,&force,pre_dzeta);
603
604         /* force contribution */
605         v3_add(&(ai->f),&(ai->f),&force);
606         
607 #ifdef DEBUG
608         if(ai==&(moldyn->atom[0])) {
609                 printf("force 3bp (k2): [%d %d %d]\n",ai->tag,aj->tag,ak->tag);
610                 printf("adding %f %f %f\n",force.x,force.y,force.z);
611                 printf("total i: %f %f %f\n",ai->f.x,ai->f.y,ai->f.z);
612         }
613 #endif
614
615         /* derivative wrt j */
616         v3_scale(&force,&dcosdrj,fcdg*pre_dzeta);
617
618         /* force contribution */
619         v3_add(&(aj->f),&(aj->f),&force);
620
621 #ifdef DEBUG
622         if(aj==&(moldyn->atom[0])) {
623                 printf("force 3bp (k2): [%d %d %d]\n",ai->tag,aj->tag,ak->tag);
624                 printf("adding %f %f %f\n",force.x,force.y,force.z);
625                 printf("total j: %f %f %f\n",aj->f.x,aj->f.y,aj->f.z);
626         }
627 #endif
628
629         /* virial */
630         v3_scale(&force,&force,-1.0);
631         virial_calc(ai,&force,&dist_ij);
632
633         /* derivative wrt k */
634         v3_scale(&force,&dist_ik,-1.0*dfcg); // dri rik = - drk rik
635         v3_scale(&tmp,&dcosdrk,fcdg);
636         v3_add(&force,&force,&tmp);
637         v3_scale(&force,&force,pre_dzeta);
638
639         /* force contribution */
640         v3_add(&(ak->f),&(ak->f),&force);
641
642 #ifdef DEBUG
643         if(ak==&(moldyn->atom[0])) {
644                 printf("force 3bp (k2): [%d %d %d]\n",ai->tag,aj->tag,ak->tag);
645                 printf("adding %f %f %f\n",force.x,force.y,force.z);
646                 printf("total k: %f %f %f\n",ak->f.x,ak->f.y,ak->f.z);
647         }
648 #endif
649
650         /* virial */
651         v3_scale(&force,&force,-1.0);
652         virial_calc(ai,&force,&dist_ik);
653         
654         /* increase k counter */
655         exchange->kcount++;     
656
657         return 0;
658
659 }
660
661 int tersoff_mult_check_2b_bond(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
662
663         t_tersoff_mult_params *params;
664         t_3dvec dist;
665         double d;
666         u8 brand;
667
668         v3_sub(&dist,&(aj->r),&(ai->r));
669         if(bc) check_per_bound(moldyn,&dist);
670         d=v3_absolute_square(&dist);
671
672         params=moldyn->pot_params;
673         brand=ai->brand;
674
675         if(brand==aj->brand) {
676                 if(d<=params->S2[brand])
677                         return TRUE;
678         }
679         else {
680                 if(d<=params->S2mixed)
681                         return TRUE;
682         }
683
684         return FALSE;
685 }
686