more changes ...
[physik/posic.git] / moldyn.c
index 82749b2..8b80242 100644 (file)
--- a/moldyn.c
+++ b/moldyn.c
  *
  */
 
-#include "moldyn.h"
-
+#define _GNU_SOURCE
 #include <stdio.h>
 #include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
 #include <math.h>
 
+#include "moldyn.h"
+
 #include "math/math.h"
 #include "init/init.h"
 #include "random/random.h"
+#include "visual/visual.h"
+#include "list/list.h"
+
+int moldyn_usage(char **argv) {
+
+       printf("\n%s usage:\n\n",argv[0]);
+       printf("--- general options ---\n");
+       printf("-E <steps> <file> (log total energy)\n");
+       printf("-M <steps> <file> (log total momentum)\n");
+       printf("-D <steps> <file> (dump total information)\n");
+       printf("-S <steps> <filebase> (single save file)\n");
+       printf("-V <steps> <filebase> (rasmol file)\n");
+       printf("--- physics options ---\n");
+       printf("-T <temperature> [K] (%f)\n",MOLDYN_TEMP);
+       printf("-t <timestep tau> [s] (%.15f)\n",MOLDYN_TAU);
+       printf("-C <cutoff radius> [m] (%.15f)\n",MOLDYN_CUTOFF);
+       printf("-R <runs> (%d)\n",MOLDYN_RUNS);
+       printf(" -- integration algo --\n");
+       printf("  -I <number> (%d)\n",MOLDYN_INTEGRATE_DEFAULT);
+       printf("     0: velocity verlet\n");
+       printf(" -- potential --\n");
+       printf("  -P <number> <param1 param2 ...>\n");
+       printf("     0: harmonic oscillator\n");
+       printf("        param1: spring constant\n");
+       printf("        param2: equilibrium distance\n");
+       printf("     1: lennard jones\n");
+       printf("        param1: epsilon\n");
+       printf("        param2: sigma\n");
+       printf("\n");
+
+       return 0;
+}
+
+int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) {
+
+       int i;
+
+       memset(moldyn,0,sizeof(t_moldyn));
+
+       /* default values */
+       moldyn->t=MOLDYN_TEMP;
+       moldyn->tau=MOLDYN_TAU;
+       moldyn->time_steps=MOLDYN_RUNS;
+       moldyn->integrate=velocity_verlet;
+
+       /* parse argv */
+       for(i=1;i<argc;i++) {
+               if(argv[i][0]=='-') {
+                       switch(argv[i][1]){
+                               case 'E':
+                                       moldyn->ewrite=atoi(argv[++i]);
+                                       strncpy(moldyn->efb,argv[++i],64);
+                                       break;
+                               case 'M':
+                                       moldyn->mwrite=atoi(argv[++i]);
+                                       strncpy(moldyn->mfb,argv[++i],64);
+                                       break;
+                               case 'S':
+                                       moldyn->swrite=atoi(argv[++i]);
+                                       strncpy(moldyn->sfb,argv[++i],64);
+                                       break;
+                               case 'V':
+                                       moldyn->vwrite=atoi(argv[++i]);
+                                       strncpy(moldyn->vfb,argv[++i],64);
+                                       break;
+                               case 'T':
+                                       moldyn->t=atof(argv[++i]);
+                                       break;
+                               case 't':
+                                       moldyn->tau=atof(argv[++i]);
+                                       break;
+                               case 'C':
+                                       moldyn->cutoff=atof(argv[++i]);
+                                       break;
+                               case 'R':
+                                       moldyn->time_steps=atoi(argv[++i]);
+                                       break;
+                               case 'I':
+       /* integration algorithm */
+       switch(atoi(argv[++i])) {
+               case MOLDYN_INTEGRATE_VERLET:
+                       moldyn->integrate=velocity_verlet;
+                       break;
+               default:
+                       printf("unknown integration algo %s\n",argv[i]);
+                       moldyn_usage(argv);
+                       return -1;
+       }
+
+                               case 'P':
+       /* potential + params */
+       switch(atoi(argv[++i])) {
+               case MOLDYN_POTENTIAL_HO:
+                       hop.spring_constant=atof(argv[++i]);
+                       hop.equilibrium_distance=atof(argv[++i]);
+                       moldyn->pot_params=malloc(sizeof(t_ho_params));
+                       memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params));
+                       moldyn->potential_force_function=harmonic_oscillator;
+                       break;
+               case MOLDYN_POTENTIAL_LJ:
+                       e=atof(argv[++i]);
+                       s=atof(argv[++i]);
+                       ljp.epsilon4=4*e;
+                       ljp.sigma6=s*s*s*s*s*s;
+                       ljp.sigma12=ljp.sigma6*ljp.sigma6;
+                       moldyn->pot_params=malloc(sizeof(t_lj_params));
+                       memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params));
+                       moldyn->potential_force_function=lennard_jones;
+                       break;
+               default:
+                       printf("unknown potential %s\n",argv[i]);
+                       moldyn_usage(argv);
+                       return -1;
+       }
+
+                               default:
+                                       printf("unknown option %s\n",argv[i]);
+                                       moldyn_usage(argv);
+                                       return -1;
+                       }
+               } else {
+                       moldyn_usage(argv);
+                       return -1;
+               }
+       }
+
+       return 0;
+}
+
+int moldyn_log_init(t_moldyn *moldyn) {
+
+       moldyn->lvstat=0;
+       t_visual *vis;
+
+       vis=&(moldyn->vis);
+
+       if(moldyn->ewrite) {
+               moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC);
+               if(moldyn->efd<0) {
+                       perror("[moldyn] efd open");
+                       return moldyn->efd;
+               }
+               dprintf(moldyn->efd,"# moldyn total energy logfile\n");
+               moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E;
+       }
+
+       if(moldyn->mwrite) {
+               moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC);
+               if(moldyn->mfd<0) {
+                       perror("[moldyn] mfd open");
+                       return moldyn->mfd;
+               }
+               dprintf(moldyn->mfd,"# moldyn total momentum logfile\n");
+               moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M;
+       }
 
+       if(moldyn->swrite)
+               moldyn->lvstat|=MOLDYN_LVSTAT_SAVE;
 
-int create_lattice(unsigned char type,int element,double mass,double lc,
+       if((moldyn->vwrite)&&(vis)) {
+               moldyn->visual=vis;
+               visual_init(vis,moldyn->vfb);
+               moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL;
+       }
+
+       moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED;
+
+       return 0;
+}
+
+int moldyn_log_shutdown(t_moldyn *moldyn) {
+
+       if(moldyn->efd) close(moldyn->efd);
+       if(moldyn->mfd) close(moldyn->efd);
+       if(moldyn->dfd) close(moldyn->efd);
+       if(moldyn->visual) visual_tini(moldyn->visual);
+
+       return 0;
+}
+
+int moldyn_init(t_moldyn *moldyn,int argc,char **argv) {
+
+       int ret;
+
+       ret=moldyn_parse_argv(moldyn,argc,argv);
+       if(ret<0) return ret;
+
+       ret=moldyn_log_init(moldyn);
+       if(ret<0) return ret;
+
+       rand_init(&(moldyn->random),NULL,1);
+       moldyn->random.status|=RAND_STAT_VERBOSE;
+
+       moldyn->status=0;
+
+       return 0;
+}
+
+int moldyn_shutdown(t_moldyn *moldyn) {
+
+       moldyn_log_shutdown(moldyn);
+       rand_close(&(moldyn->random));
+       free(moldyn->atom);
+
+       return 0;
+}
+
+int create_lattice(u8 type,int element,double mass,double lc,
                    int a,int b,int c,t_atom **atom) {
 
        int count;
@@ -72,7 +283,7 @@ int destroy_lattice(t_atom *atom) {
        return 0;
 }
 
-int thermal_init(t_atom *atom,t_random *random,int count,double t) {
+int thermal_init(t_moldyn *moldyn) {
 
        /*
         * - gaussian distribution of velocities
@@ -83,11 +294,16 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) {
        int i;
        double v,sigma;
        t_3dvec p_total,delta;
+       t_atom *atom;
+       t_random *random;
+
+       atom=moldyn->atom;
+       random=&(moldyn->random);
 
        /* gaussian distribution of velocities */
        v3_zero(&p_total);
-       for(i=0;i<count;i++) {
-               sigma=sqrt(2.0*K_BOLTZMANN*t/atom[i].mass);
+       for(i=0;i<moldyn->count;i++) {
+               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass);
                /* x direction */
                v=sigma*rand_get_gauss(random);
                atom[i].v.x=v;
@@ -103,31 +319,34 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) {
        }
 
        /* zero total momentum */
-       v3_scale(&p_total,&p_total,1.0/count);
-       for(i=0;i<count;i++) {
+       v3_scale(&p_total,&p_total,1.0/moldyn->count);
+       for(i=0;i<moldyn->count;i++) {
                v3_scale(&delta,&p_total,1.0/atom[i].mass);
                v3_sub(&(atom[i].v),&(atom[i].v),&delta);
        }
 
        /* velocity scaling */
-       scale_velocity(atom,count,t);
+       scale_velocity(moldyn);
 
        return 0;
 }
 
-int scale_velocity(t_atom *atom,int count,double t) {
+int scale_velocity(t_moldyn *moldyn) {
 
        int i;
        double e,c;
+       t_atom *atom;
+
+       atom=moldyn->atom;
 
        /*
         * - velocity scaling (E = 3/2 N k T), E: kinetic energy
         */
        e=0.0;
-       for(i=0;i<count;i++)
+       for(i=0;i<moldyn->count;i++)
                e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       c=sqrt((2.0*e)/(3.0*count*K_BOLTZMANN*t));
-       for(i=0;i<count;i++)
+       c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t));
+       for(i=0;i<moldyn->count;i++)
                v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c));
 
        return 0;
@@ -149,7 +368,7 @@ double get_e_kin(t_atom *atom,int count) {
 
 double get_e_pot(t_moldyn *moldyn) {
 
-       return(moldyn->potential(moldyn));
+       return moldyn->energy;
 }
 
 double get_total_energy(t_moldyn *moldyn) {
@@ -176,6 +395,297 @@ t_3dvec get_total_p(t_atom *atom, int count) {
        return p_total;
 }
 
+double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) {
+
+       double tau;
+
+       tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass));
+       tau*=1.0E-9;
+       if(tau<moldyn->tau)
+               printf("[moldyn] warning: time step  (%f > %.15f)\n",
+                      moldyn->tau,tau);
+
+       return tau;     
+}
+
+/*
+ * numerical tricks
+ */
+
+/* linked list / cell method */
+
+int link_cell_init(t_moldyn *moldyn) {
+
+       t_linkcell *lc;
+       int i;
+
+       lc=&(moldyn->lc);
+
+       /* list log fd */
+       lc->listfd=open("/dev/null",O_WRONLY);
+
+       /* partitioning the md cell */
+       lc->nx=moldyn->dim.x/moldyn->cutoff;
+       lc->x=moldyn->dim.x/lc->nx;
+       lc->ny=moldyn->dim.y/moldyn->cutoff;
+       lc->y=moldyn->dim.y/lc->ny;
+       lc->nz=moldyn->dim.z/moldyn->cutoff;
+       lc->z=moldyn->dim.z/lc->nz;
+
+       lc->cells=lc->nx*lc->ny*lc->nz;
+       lc->subcell=malloc(lc->cells*sizeof(t_list));
+
+       printf("initializing linked cells (%d)\n",lc->cells);
+
+       for(i=0;i<lc->cells;i++)
+               //list_init(&(lc->subcell[i]),1);
+               list_init(&(lc->subcell[i]));
+
+       link_cell_update(moldyn);
+       
+       return 0;
+}
+
+int link_cell_update(t_moldyn *moldyn) {
+
+       int count,i,j,k;
+       int nx,ny,nz;
+       t_atom *atom;
+       t_linkcell *lc;
+
+       atom=moldyn->atom;
+       lc=&(moldyn->lc);
+
+       nx=lc->nx;
+       ny=lc->ny;
+       nz=lc->nz;
+
+       for(i=0;i<lc->cells;i++)
+               list_destroy(&(moldyn->lc.subcell[i]));
+       
+       for(count=0;count<moedyn->count;count++) {
+               i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x;
+               j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y;
+               k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z;
+               list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]),
+                                      &(atom[count]));
+       }
+
+       return 0;
+}
+
+int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
+
+       t_linkcell *lc;
+       int a;
+       int count1,count2;
+       int ci,cj,ck;
+       int nx,ny,nz;
+       int x,y,z;
+       u8 bx,by,bz;
+
+       lc=&(moldyn->lc);
+       nx=lc->nx;
+       ny=lc->ny;
+       nz=lc->nz;
+       count1=1;
+       count2=27;
+       a=nx*ny;
+
+
+       cell[0]=lc->subcell[i+j*nx+k*a];
+       for(ci=-1;ci<=1;ci++) {
+               bx=0;
+               x=i+ci;
+               if((x<0)||(x>=nx)) {
+                       x=(x+nx)%nx;
+                       bx=1;
+               }
+               for(cj=-1;cj<=1;cj++) {
+                       by=0;
+                       y=j+cj;
+                       if((y<0)||(y>=ny)) {
+                               y=(y+ny)%ny;
+                               by=1;
+                       }
+                       for(ck=-1;ck<=1;ck++) {
+                               bz=0;
+                               z=k+ck;
+                               if((z<0)||(z>=nz)) {
+                                       z=(z+nz)%nz;
+                                       bz=1;
+                               }
+                               if(!(ci|cj|ck)) continue;
+                               if(bx|by|bz) {
+                                       cell[--count2]=lc->subcell[x+y*nx+z*a];
+                               }
+                               else {
+                                       cell[count1++]=lc->subcell[x+y*nx+z*a];
+                               }
+                       }
+               }
+       }
+
+       lc->dnlc=count2;
+       lc->countn=27;
+
+       return count2;
+}
+
+int link_cell_shutdown(t_moldyn *moldyn) {
+
+       int i;
+       t_linkcell *lc;
+
+       lc=&(moldyn->lc);
+
+       for(i=0;i<lc->nx*lc->ny*lc->nz;i++)
+               list_shutdown(&(moldyn->lc.subcell[i]));
+
+       if(lc->listfd) close(lc->listfd);
+
+       return 0;
+}
+
+/*
+ *
+ * 'integration of newtons equation' - algorithms
+ *
+ */
+
+/* start the integration */
+
+int moldyn_integrate(t_moldyn *moldyn) {
+
+       int i,sched;
+       unsigned int e,m,s,d,v;
+       t_3dvec p;
+
+       int fd;
+       char fb[128];
+
+       /* initialize linked cell method */
+       link_cell_init(moldyn);
+
+       /* logging & visualization */
+       e=moldyn->ewrite;
+       m=moldyn->mwrite;
+       s=moldyn->swrite;
+       d=moldyn->dwrite;
+       v=moldyn->vwrite;
+
+       if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) {
+               printf("[moldyn] warning, lv system not initialized\n");
+               return -1;
+       }
+
+       /* sqaure of some variables */
+       moldyn->tau_square=moldyn->tau*moldyn->tau;
+       moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff;
+
+       /* calculate initial forces */
+       moldyn->potential_force_function(moldyn);
+
+       for(sched=0;sched<moldyn->schedule.content_count;sched++) {
+               moldyn->tau=;
+               moldyn->tau_square=;
+
+       // hier weiter ...
+
+       for(i=0;i<moldyn->time_steps;i++) {
+
+               /* integration step */
+               moldyn->integrate(moldyn);
+
+               /* check for log & visualization */
+               if(e) {
+                       if(!(i%e))
+                               dprintf(moldyn->efd,
+                                       "%.15f %.45f\n",i*moldyn->tau,
+                                       get_total_energy(moldyn));
+               }
+               if(m) {
+                       if(!(i%m)) {
+                               p=get_total_p(moldyn->atom,moldyn->count);
+                               dprintf(moldyn->mfd,
+                                       "%.15f %.45f\n",i*moldyn->tau,
+                                       v3_norm(&p));
+                       }
+               }
+               if(s) {
+                       if(!(i%s)) {
+                               snprintf(fb,128,"%s-%f-%.15f.save",moldyn->sfb,
+                                        moldyn->t,i*moldyn->tau);
+                               fd=open(fb,O_WRONLY|O_TRUNC|O_CREAT);
+                               if(fd<0) perror("[moldyn] save fd open");
+                               else {
+                                       write(fd,moldyn,sizeof(t_moldyn));
+                                       write(fd,moldyn->atom,
+                                             moldyn->count*sizeof(t_atom));
+                               }
+                               close(fd);
+                       }       
+               }
+               if(v) {
+                       if(!(i%v)) {
+                               visual_atoms(moldyn->visual,i*moldyn->tau,
+                                            moldyn->atom,moldyn->count);
+                               printf("\rsteps: %d",i);
+                               fflush(stdout);
+                       }
+               }
+       }
+
+       return 0;
+}
+
+/* velocity verlet */
+
+int velocity_verlet(t_moldyn *moldyn) {
+
+       int i,count;
+       double tau,tau_square;
+       t_3dvec delta;
+       t_atom *atom;
+
+       atom=moldyn->atom;
+       count=moldyn->count;
+       tau=moldyn->tau;
+       tau_square=moldyn->tau_square;
+
+       for(i=0;i<count;i++) {
+               /* new positions */
+               v3_scale(&delta,&(atom[i].v),tau);
+               v3_add(&(atom[i].r),&(atom[i].r),&delta);
+               v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass);
+               v3_add(&(atom[i].r),&(atom[i].r),&delta);
+               v3_per_bound(&(atom[i].r),&(moldyn->dim));
+
+               /* velocities */
+               v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
+               v3_add(&(atom[i].v),&(atom[i].v),&delta);
+       }
+
+       /* neighbour list update */
+printf("list update ...\n");
+       link_cell_update(moldyn);
+printf("done\n");
+
+       /* forces depending on chosen potential */
+printf("calc potential/force ...\n");
+       potential_force_calc(moldyn);
+       //moldyn->potential_force_function(moldyn);
+printf("done\n");
+
+       for(i=0;i<count;i++) {
+               /* again velocities */
+               v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
+               v3_add(&(atom[i].v),&(atom[i].v),&delta);
+       }
+
+       return 0;
+}
+
 
 /*
  *
@@ -183,69 +693,491 @@ t_3dvec get_total_p(t_atom *atom, int count) {
  * 
  */
 
+/* generic potential and force calculation */
+
+int potential_force_calc(t_moldyn *moldyn) {
+
+       int i,count;
+       t_atom *atom;
+       t_linkcell *lc;
+       t_list neighbour[27];
+       t_list *this;
+       double u;
+       u8 bc,bc3;
+       int countn,dnlc;
+
+       count=moldyn->count;
+       atom=moldyn->atom;
+       lc=&(moldyn->lc);
+
+       /* reset energy */
+       moldyn->energy=0.0;
+
+       for(i=0;i<count;i++) {
+       
+               /* reset force */
+               v3_zero(&(atom[i].f));
+
+               /* single particle potential/force */
+               if(atom[i].attr&ATOM_ATTR_1BP)
+                       moldyn->pf_func1b(moldyn,&(atom[i]));
+
+               /* 2 body pair potential/force */
+               if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) {
+               
+                       link_cell_neighbour_index(moldyn,
+                               (atom[i].r.x+moldyn->dim.x/2)/lc->x,
+                               (atom[i].r.y+moldyn->dim.y/2)/lc->y,
+                               (atom[i].r.z+moldyn->dim.z/2)/lc->z,
+                               neighbour);
+
+                       countn=lc->countn;
+                       dnlc=lc->dnlc;
+
+                       for(j=0;j<countn;j++) {
+
+                               this=&(neighbour[j]);
+                               list_reset(this);
+
+                               if(this->start==NULL)
+                                       continue;
+
+                               bc=(j<dnlc)?0:1;
+
+                               do {
+                                       btom=this->current->data;
+
+                                       if(btom==&(atom[i]))
+                                               continue;
+
+                                       if((btom->attr&ATOM_ATTR_2BP)&
+                                          (atom[i].attr&ATOM_ATTR_2BP))
+                                               moldyn->pf_func2b(moldyn,
+                                                                 &(atom[i]),
+                                                                 btom,
+                                                                 bc);
+
+                                       /* 3 body potential/force */
+
+                                       if(!(atom[i].attr&ATOM_ATTR_3BP)||
+                                          !(btom->attr&ATOM_ATTR_3BP))
+                                               continue;
+
+                                       link_cell_neighbour_index(moldyn,
+                                          (btom->r.x+moldyn->dim.x/2)/lc->x,
+                                          (btom->r.y+moldyn->dim.y/2)/lc->y,
+                                          (btom->r.z+moldyn->dim.z/2)/lc->z,
+                                          neighbourk);
+
+                                       for(k=0;k<lc->countn;k++) {
+
+                                               thisk=&(neighbourk[k]);
+                                               list_reset(thisk);
+                                       
+                                               if(thisk->start==NULL)
+                                                       continue;
+
+                                               bck=(k<lc->dnlc)?0:1;
+
+                                               do {
+
+                       ktom=thisk->current->data;
+
+                       if(!(ktom->attr&ATOM_ATTR_3BP))
+                               continue;
+
+                       if(ktom==btom)
+                               continue;
+
+                       if(ktom==&(atom[i]))
+                               continue;
+
+                       moldyn->pf_func3b(moldyn,&(atom[i]),btom,ktom,bck);
+
+                                               } while(list_next(thisk)!=\
+                                                       L_NO_NEXT_ELEMENT);
+                                       
+                               } while(list_next(this)!=L_NO_NEXT_ELEMENT);
+                       }
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * periodic boundayr checking
+ */
+
+int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
+       
+       double x,y,z;
+
+       x=0.5*dim->x;
+       y=0.5*dim->y;
+       z=0.5*dim->z;
+
+       if(moldyn->MOLDYN_ATTR_PBX)
+               if(a->x>=x) a->x-=dim->x;
+               else if(-a->x>x) a->x+=dim->x;
+       if(moldyn->MOLDYN_ATTR_PBY)
+               if(a->y>=y) a->y-=dim->y;
+               else if(-a->y>y) a->y+=dim->y;
+       if(moldyn->MOLDYN_ATTR_PBZ)
+               if(a->z>=z) a->z-=dim->z;
+               else if(-a->z>z) a->z+=dim->z;
+
+       return 0;
+}
+        
+
+/*
+ * example potentials
+ */
+
+/* harmonic oscillator potential and force */
+
+int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) {
+
+       t_ho_params *params;
+       t_3dvec force,distance;
+       double d;
+       double sc,equi_dist;
+
+       params=moldyn->pot2b_params;
+       sc=params->spring_constant;
+       equi_dist=params->equilibrium_distance;
+
+       v3_sub(&distance,&(ai->r),&(aj->r);
+       
+       v3_per_bound(&distance,&(moldyn->dim));
+       if(bc) check_per_bound(moldyn,&distance);
+       d=v3_norm(&distance);
+       if(d<=moldyn->cutoff) {
+               /* energy is 1/2 (d-d0)^2, but we will add this twice ... */
+               moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist));
+               v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d)));
+               v3_add(&(ai->f),&(ai->f),&force);
+       }
+
+       return 0;
+}
+
 /* lennard jones potential & force for one sort of atoms */
  
-double potential_lennard_jones(t_moldyn *moldyn) {
+int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        t_lj_params *params;
-       t_atom *atom;
-       int i,j;
-       int count;
-       t_3dvec distance;
-       double d,help;
-       double u;
+       t_3dvec force,distance;
+       double d,h1,h2,u;
        double eps,sig6,sig12;
 
        params=moldyn->pot_params;
-       atom=moldyn->atom;
-       count=moldyn->count;
-       eps=params->epsilon;
+       eps=params->epsilon4;
        sig6=params->sigma6;
        sig12=params->sigma12;
 
-       u=0.0;
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       d=1.0/v3_absolute_square(&distance);    /* 1/r^2 */
-                       help=d*d;                               /* 1/r^4 */
-                       help*=d;                                /* 1/r^6 */
-                       d=help*help;                            /* 1/r^12 */
-                       u+=eps*(sig12*d-sig6*help);
-               }
+       v3_sub(&distance,&(ai->r),&(aj->r));
+       if(bc) check_per_bound(moldyn,&distance);
+       d=v3_absolute_square(&distance);        /* 1/r^2 */
+       if(d<=moldyn->cutoff_square) {
+               d=1.0/d;                        /* 1/r^2 */
+               h2=d*d;                         /* 1/r^4 */
+               h2*=d;                          /* 1/r^6 */
+               h1=h2*h2;                       /* 1/r^12 */
+               /* energy is eps*..., but we will add this twice ... */
+               moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2);
+               h2*=d;                          /* 1/r^8 */
+               h1*=d;                          /* 1/r^14 */
+               h2*=6*sig6;
+               h1*=12*sig12;
+               d=+h1-h2;
+               d*=eps;
+               v3_scale(&force,&distance,d);
+               v3_add(&(ai->f),&(aj->f),&force);
        }
+
+       return 0;
+}
+
+/*
+ * tersoff potential & force for 2 sorts of atoms
+ */
+
+/* tersoff 1 body part */
+int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) {
+
+       int num;
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
        
-       return u;
+       num=ai->bnum;
+       params=moldyn->pot1b_params;
+       exchange=&(params->exchange);
+
+       /*
+        * simple: point constant parameters only depending on atom i to
+        *         their right values
+        */
+
+       exchange->beta=&(params->beta[num]);
+       exchange->n=&(params->n[num]);
+       exchange->c=&(params->c[num]);
+       exchange->d=&(params->d[num]);
+       exchange->h=&(params->h[num]);
+
+       exchange->betan=pow(*(exchange->beta),*(exchange->n));
+       exchange->c2=params->c[num]*params->c[num];
+       exchange->d2=params->d[num]*params->d[num];
+       exchange->c2d2=exchange->c2/exchange->d2;
+
+       return 0;
 }
+       
+/* tersoff 2 body part */
+int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
-int force_lennard_jones(t_moldyn *moldyn) {
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
+       t_3dvec dist_ij;
+       double d_ij;
+       double A,B,R,S,lambda;
+       int num;
 
-       t_lj_params *params;
-       int i,j,count;
-       t_atom *atom;
-       t_3dvec distance;
-       t_3dvec force;
-       double d,h1,h2;
+       params=moldyn->pot_params;
+       num=ai->bnum;
+       exchange=&(params->exchange);
+
+       exchange->run3bp=0;
+       
+       /*
+        * we need: f_c, df_c, f_r, df_r
+        *
+        * therefore we need: R, S, A, lambda
+        */
+
+       v3_sub(&dist_ij,&(ai->r),&(aj->r));
+
+       if(bc) check_per_bound(moldyn,&dist_ij);
+
+       /* save for use in 3bp */ /* REALLY ?!?!?! */
+       exchange->dist_ij=dist_ij;
+
+       /* constants */
+       if(num==aj->bnum) {
+               S=params->S[num];
+               R=params->R[num];
+               A=params->A[num];
+               lambda=params->lambda[num];
+               /* more constants depending of atoms i and j, needed in 3bp */
+               params->exchange.B=&(params->B[num]);
+               params->exchange.mu=params->mu[num];
+               params->exchange.chi=1.0;
+       }
+       else {
+               S=params->Smixed;
+               R=params->Rmixed;
+               A=params->Amixed;
+               lambda=params->lambda_m;
+               /* more constants depending of atoms i and j, needed in 3bp */
+               params->exchange.B=&(params->Bmixed);
+               params->exchange.mu=&(params->mu_m);
+               params->exchange.chi=params->chi;
+       }
+
+       d_ij=v3_norm(&dist_ij);
+
+       /* save for use in 3bp */
+       exchange->d_ij=d_ij;
+
+       if(d_ij>S)
+               return 0;
+
+       f_r=A*exp(-lamda*d_ij);
+       df_r=-lambda*f_r/d_ij;
+
+       /* f_a, df_a calc + save for 3bp use */
+       exchange->f_a=-B*exp(-mu*d_ij);
+       exchange->df_a=-mu*exchange->f_a/d_ij;
+
+       if(d_ij<R) {
+               /* f_c = 1, df_c = 0 */
+               f_c=1.0;
+               df_c=0.0;
+               v3_scale(&force,&dist_ij,df_r);
+       }
+       else {
+               s_r=S-R;
+               arg=PI*(d_ij-R)/s_r;
+               f_c=0.5+0.5*cos(arg);
+               df_c=-0.5*sin(arg)*(PI/(s_r*d_ij));
+               scale=df_c*f_r+df_r*f_c;
+               v3_scale(&force,&dist_ij,scale);
+       }
+
+       /* add forces */
+       v3_add(&(ai->f),&(ai->f),&force);
+       /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
+       moldyn->energy+=(0.25*f_r*f_c);
+
+       /* save for use in 3bp */
+       exchange->f_c=f_c;
+       exchange->df_c=df_c;
+
+       /* enable the run of 3bp function */
+       exchange->run3bp=1;
+
+       return 0;
+}
+
+/* tersoff 3 body part */
+
+int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
+
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
+       t_3dvec dist_ij,dist_ik,dist_jk;
+       t_3dvec temp,force;
+       double R,S,s_r;
+       double d_ij,d_ik,d_jk;
+       double f_c,df_c,b_ij,f_a,df_a;
+       double n,c,d,h,neta,betan,betan_1;
+       double theta,cos_theta,sin_theta;
+       int num;
 
-       atom=moldyn->atom;      
-       count=moldyn->count;
        params=moldyn->pot_params;
+       num=ai->bnum;
+       exchange=params->exchange;
 
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       v3_per_bound(&distance,&(moldyn->dim));
-                       d=v3_absolute_square(&distance);
-                       if(d<=moldyn->cutoff_square) {
-                               h1=1.0/d;                       /* 1/r^2 */
-                               d=h1*h1;                        /* 1/r^4 */
-                               h2=d*d;                         /* 1/r^8 */
-                               h1*=d;                          /* 1/r^6 */
-                               h1*=h2;                         /* 1/r^14 */
-                       }
-               }
+       if(!(exchange->run3bp))
+               return 0;
+
+       /*
+        * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a
+        *
+        * we got f_c, df_c, f_a, df_a from 2bp calculation
+        */
+
+       d_ij=exchange->d_ij;
+       d_ij2=exchange->d_ij2;
+
+       f_a=params->exchange.f_a;
+       df_a=params->exchange.df_a;
+       
+       /* d_ij is <= S, as we didn't return so far! */
+
+       /*
+        * calc of b_ij (scalar) and db_ij (vector)
+        *
+        * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta
+        *
+        * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik,
+        *              w_ik,
+        *
+        */
+
+       
+       v3_sub(&dist_ik,&(aj->i),&(ak->r));
+       if(bc) check_per_bound(moldyn,&dist_ik);
+       d_ik=v3_norm(&dist_ik);
+
+       /* constants for f_c_ik calc */
+       if(num==ak->bnum) {
+               R=params->R[num];
+               S=params->S[num];
+       }
+       else {
+               R=params->Rmixed;
+               S=params->Smixed;
        }
 
+       /* calc of f_c_ik */
+       if(d_ik>S)
+               return 0;
+
+       if(d_ik<R) {
+               /* f_c_ik = 1, df_c_ik = 0 */
+               f_c_ik=1.0;
+               df_c_ik=0.0;
+       }
+       else {
+               s_r=S-R;
+               arg=PI*(d_ik-R)/s_r;
+               f_c_ik=0.5+0.5*cos(arg);
+               df_c_ik=-0.5*sin(arg)*(PI/(s_r*d_ik));
+       }
+       
+       v3_sub(&dist_jk,&(aj->r),&(ak->r));
+       if(bc) check_per_bound(moldyn,&dist_jk);
+       d_jk=v3_norm(&dist_jk);
+
+       beta=*(exchange->beta);
+       betan=exchange->betan;
+       n=*(exchange->n);
+       c=*(exchange->c);
+       d=*(exchange->d);
+       h=*(exchange->h);
+       c2=exchange->c2;
+       d2=exchange->d2;
+       c2d2=exchange->c2d2;
+
+       numer=d_ij2+d_ik*d_ik-d_jk*d_jk;
+       denom=2*d_ij*d_ik;
+       cos_theta=numer/denom;
+       sin_theta=sqrt(1.0-(cos_theta*cos_theta));
+       theta=arccos(cos_theta);
+       d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom);
+       d_theta1=2*denom-numer*2*d_ik/d_ij;
+       d_theta2=2*denom-numer*2*d_ij/d_ik;
+       d_theta1*=d_theta;
+       d_theta2*=d_theta;
+
+       h_cos=(h-cos_theta);
+       h_cos2=h_cos*h_cos;
+       d2_h_cos2=d2-h_cos2;
+
+       /* some usefull expressions */
+       frac1=c2/(d2-h_cos2);
+       bracket1=1+c2d2-frac1;
+       bracket2=f_c_ik*bracket1;
+       bracket2_n_1=pow(bracket2,n-1.0);
+       bracket2_n=bracket2_n_1*bracket2;
+       bracket3=1+betan*bracket2_n;
+       bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0);
+       bracket3_pow=bracket3_pow_1*bracket3;
+
+       /* now go on with calc of b_ij and derivation of b_ij */
+       b_ij=chi*bracket3_pow;
+
+       /* derivation of theta */
+       v3_scale(&force,&dist_ij,d1_theta);
+       v3_scale(&temp,&dist_ik,d_theta2);
+       v3_add(&force,&force,&temp);
+
+       /* part 1 of derivation of b_ij */
+       v3_scale(&force,sin_theta*2*h_cos*f_c_ik*frac1);
+
+       /* part 2 of derivation of b_ij */
+       v3_scale(&temp,&dist_ik,df_c_ik*bracket1);
+
+       /* sum up and scale ... */
+       v3_add(&temp,&temp,&force);
+       scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n));
+       v3_scale(&temp,&temp,scale);
+
+       /* now construct an energy and a force out of that */
+       v3_scale(&temp,&temp,f_a);
+       v3_scale(&force,&dist_ij,df_a*b_ij);
+       v3_add(&temp,&temp,&force);
+       v3_scale(&temp,&temp,f_c);
+       v3_scale(&force,&dist_ij,df_c*b_ij*f_a);
+       v3_add(&force,&force,&temp);
+
+       /* add forces */
+       v3_add(&(ai->f),&(ai->f),&force);
+       /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
+       moldyn->energy+=(0.25*f_a*b_ij*f_c);
+                               
        return 0;
 }