X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;ds=sidebyside;f=physics_compact%2Fmath.tex;h=5f437fa5cce20f9e927260ebf57c5be34d814728;hb=df550a4ec6a24e44ceba6ccf4111722940040c1d;hp=1903ab18ef1c5e7e699f6bef5b6c9afc6f9ba284;hpb=f2dddd61b086ccbe46fa103d509903c3a426c034;p=lectures%2Flatex.git diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 1903ab1..5f437fa 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,6 +1,26 @@ -\chapter{Mathematical tools} +\part{Mathematical foundations} -\section{Spherical coordinates} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots -\section{Fourier integrals} +\chapter{Linear algebra} + +\section{Vectors and bases} + +A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$. +\begin{equation} +\vec{a}=\sum_i \vec{e}_i a_i +\label{eq:vec_sum} +\end{equation} +The scalar product for an $N$-dimensional vector space is defined as +\begin{equation} +(\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} +\end{equation} +which introduces a norm +\begin{equation} +||\vec{a}||=\sqrt{(\vec{a},\vec{a})} +\end{equation} +that correpsonds to the length of vector \vec{a}. +Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} \ldots +\begin{equation} +\end{equation}