X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;ds=sidebyside;f=physics_compact%2Fsolid.tex;h=7fa936f465fcae0247413068b6836988fa6515ab;hb=9070c77ed62df80818cc6cc0f8e8ad2eee745272;hp=33fe8a4c970900514004a73f54600c7b26875566;hpb=283813d62a10b6805e95f65eee8e2de5000d8d94;p=lectures%2Flatex.git diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index 33fe8a4..7fa936f 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -220,7 +220,7 @@ r\ket{\vec{r'}} & = & r'\ket{\vec{r'}} \end{eqnarray} we get \begin{equation} --i\hbar(r'\times \nabla_{\vec{r'}})\braket{\vec{r'}}{\chi_{lm}} +-i\hbar(\vec{r'}\times \nabla_{\vec{r'}})\braket{\vec{r'}}{\chi_{lm}} E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r''}} \text{ .} \label{eq:solid:so_me} @@ -283,7 +283,53 @@ To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the \delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} Y^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) \end{eqnarray} -All megnetic states $m=-l,-l+1,\ldots,l-1,l$ contribute to the potential for angular momentum $l$. +and if all megnetic states $m=-l,-l+1,\ldots,l-1,l$ that contribute to the potential for angular momentum $l$ are considered +\begin{equation} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +\sum_mY^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) \text{ ,} +\end{equation} +which can be rewritten as +\begin{equation} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +\frac{2l+1}{4\pi}P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right) +\end{equation} +using the vector addition theorem +\begin{equation} +P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)= +\frac{4\pi}{2l+1}\sum_mY^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) +\end{equation} +In total, the matrix elements of the potential for angular momentum $l$ can be calculated as +\begin{eqnarray} +\bra{\vec{r'}}V^{\text{KB,SO}}\ket{\vec{r''}}&=& +\bra{\vec{r'}}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l +\braket{\chi_{lm}}{\vec{r''}}\\ +&=& +-i\hbar(\vec{r'}\times \nabla_{\vec{r'}}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)\times\nonumber\\ +&&\times\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi}\\ +&=& +-i\hbar(\vec{r'}\times \nabla_{\vec{r'}}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P'_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)\times\nonumber\\ +\end{eqnarray} + +If the potential at position $\vec{r}$ is considered a sum of atomic potentials $v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n})$ (atom $n$ of species $\alpha$) +\begin{equation} +V(\vec{r})=\sum_{\alpha}\sum_n v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n}) +\end{equation} +and the SO projectors are likewise centered on atoms, the SO potential contribution reads +\begin{equation} +\end{equation} Finally, to evaluate $V^{\text{SO}}_l\ket{\Psi}$, the integral \ldots \begin{equation} \end{equation} +