X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=36086581e666b082c6a3d554706609800beafbb2;hb=ade81aa2afb15f22e98ed9595ff303d4fedfe122;hp=4b580890f3eaab417494fa497130f53570130ce4;hpb=e6f456c0fa807b86e1b25996e70efcdcfe390ea5;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 4b58089..3608658 100644 --- a/moldyn.c +++ b/moldyn.c @@ -23,199 +23,188 @@ #include "visual/visual.h" #include "list/list.h" -int moldyn_usage(char **argv) { - - printf("\n%s usage:\n\n",argv[0]); - printf("--- general options ---\n"); - printf("-E (log total energy)\n"); - printf("-M (log total momentum)\n"); - printf("-D (dump total information)\n"); - printf("-S (single save file)\n"); - printf("-V (rasmol file)\n"); - printf("--- physics options ---\n"); - printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%.15f)\n",MOLDYN_TAU); - printf("-R (%d)\n",MOLDYN_RUNS); - printf(" -- integration algo --\n"); - printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); - printf(" 0: velocity verlet\n"); - printf(" -- potential --\n"); - printf(" -P \n"); - printf(" 0: harmonic oscillator\n"); - printf(" param1: spring constant\n"); - printf(" param2: equilibrium distance\n"); - printf(" 1: lennard jones\n"); - printf(" param1: epsilon\n"); - printf(" param2: sigma\n"); - printf("\n"); - - return 0; -} - -int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { - int i; - t_ho_params hop; - t_lj_params ljp; - double s,e; +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; memset(moldyn,0,sizeof(t_moldyn)); - /* default values */ - moldyn->t=MOLDYN_TEMP; - moldyn->tau=MOLDYN_TAU; - moldyn->time_steps=MOLDYN_RUNS; - moldyn->integrate=velocity_verlet; - moldyn->potential_force_function=lennard_jones; - - /* parse argv */ - for(i=1;iewrite=atoi(argv[++i]); - strncpy(moldyn->efb,argv[++i],64); - break; - case 'M': - moldyn->mwrite=atoi(argv[++i]); - strncpy(moldyn->mfb,argv[++i],64); - break; - case 'D': - moldyn->dwrite=atoi(argv[++i]); - strncpy(moldyn->dfb,argv[++i],64); - break; - case 'S': - moldyn->swrite=atoi(argv[++i]); - strncpy(moldyn->sfb,argv[++i],64); - break; - case 'V': - moldyn->vwrite=atoi(argv[++i]); - strncpy(moldyn->vfb,argv[++i],64); - break; - case 'T': - moldyn->t=atof(argv[++i]); - break; - case 't': - moldyn->tau=atof(argv[++i]); - break; - case 'R': - moldyn->time_steps=atoi(argv[++i]); - break; - case 'I': - /* integration algorithm */ - switch(atoi(argv[++i])) { + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; + + return 0; +} + +int moldyn_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); + + return 0; +} + +int set_int_alg(t_moldyn *moldyn,u8 algo) { + + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; break; default: - printf("unknown integration algo %s\n",argv[i]); - moldyn_usage(argv); + printf("unknown integration algorithm: %02x\n",algo); return -1; } - case 'P': - /* potential + params */ - switch(atoi(argv[++i])) { - case MOLDYN_POTENTIAL_HO: - hop.spring_constant=atof(argv[++i]); - hop.equilibrium_distance=atof(argv[++i]); - moldyn->pot_params=malloc(sizeof(t_ho_params)); - memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); - moldyn->potential_force_function=harmonic_oscillator; - break; - case MOLDYN_POTENTIAL_LJ: - e=atof(argv[++i]); - s=atof(argv[++i]); - ljp.epsilon4=4*e; - ljp.sigma6=s*s*s*s*s*s; - ljp.sigma12=ljp.sigma6*ljp.sigma6; - moldyn->pot_params=malloc(sizeof(t_lj_params)); - memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); - moldyn->potential_force_function=lennard_jones; - break; - default: - printf("unknown potential %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } + return 0; +} - default: - printf("unknown option %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } - } else { - moldyn_usage(argv); - return -1; - } - } +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; return 0; } -int moldyn_log_init(t_moldyn *moldyn,void *v) { +int set_temperature(t_moldyn *moldyn,double t_ref) { - moldyn->lvstat=0; - t_visual *vis; + moldyn->t_ref=t_ref; - vis=v; + return 0; +} - if(moldyn->ewrite) { - moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->efd<0) { - perror("[moldyn] efd open"); - return moldyn->efd; - } - dprintf(moldyn->efd,"# moldyn total energy logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E; - } +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { - if(moldyn->mwrite) { - moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); - return moldyn->mfd; - } - dprintf(moldyn->mfd,"# moldyn total momentum logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M; - } + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; + + return 0; +} - if(moldyn->swrite) - moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { - if(moldyn->dwrite) { - moldyn->dfd=open(moldyn->dfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->dfd<0) { - perror("[moldyn] dfd open"); - return moldyn->dfd; - } - write(moldyn->dfd,moldyn,sizeof(t_moldyn)); - moldyn->lvstat|=MOLDYN_LVSTAT_DUMP; - } + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; - if((moldyn->vwrite)&&(vis)) { - moldyn->visual=vis; - visual_init(vis,moldyn->vfb); - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; } - moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; + return 0; +} + +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; return 0; } -int moldyn_shutdown(t_moldyn *moldyn) { +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { + + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; + return 0; +} + +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { + + moldyn->func1b=func; + moldyn->pot1b_params=params; + + return 0; +} + +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { + + moldyn->func2b=func; + moldyn->pot2b_params=params; + + return 0; +} + +int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params) { + + moldyn->func2b_post=func; + moldyn->pot2b_params=params; + + return 0; +} + +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { + + moldyn->func3b=func; + moldyn->pot3b_params=params; + + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->efd<0) { + perror("[moldyn] efd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->mfd<0) { + perror("[moldyn] mfd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + strncpy(moldyn->sfb,fb,63); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + strncpy(moldyn->vfb,fb,63); + visual_init(&(moldyn->vis),fb); + break; + default: + printf("unknown log mechanism: %02x\n",type); + return -1; + } + + return 0; +} + +int moldyn_log_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] log shutdown\n"); if(moldyn->efd) close(moldyn->efd); - if(moldyn->mfd) close(moldyn->efd); - if(moldyn->dfd) close(moldyn->efd); - if(moldyn->visual) visual_tini(moldyn->visual); + if(moldyn->mfd) close(moldyn->mfd); + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); return 0; } -int create_lattice(unsigned char type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 bnum,int a,int b,int c) { int count; int ret; @@ -224,10 +213,11 @@ int create_lattice(unsigned char type,int element,double mass,double lc, count=a*b*c; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -236,10 +226,10 @@ int create_lattice(unsigned char type,int element,double mass,double lc, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -254,23 +244,58 @@ int create_lattice(unsigned char type,int element,double mass,double lc, return -1; } + moldyn->count=count; + printf("[moldyn] created lattice with %d atoms\n",count); + while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; count-=1; + moldyn->atom[count].element=element; + moldyn->atom[count].mass=mass; + moldyn->atom[count].attr=attr; + moldyn->atom[count].bnum=bnum; + check_per_bound(moldyn,&(moldyn->atom[count].r)); } + return ret; } -int destroy_lattice(t_atom *atom) { +int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, + t_3dvec *r,t_3dvec *v) { - if(atom) free(atom); + t_atom *atom; + void *ptr; + int count; + + atom=moldyn->atom; + count=++(moldyn->count); + + ptr=realloc(atom,count*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count-1].r=*r; + atom[count-1].v=*v; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].bnum=bnum; + atom[count-1].attr=attr; return 0; } -int thermal_init(t_moldyn *moldyn,t_random *random) { +int destroy_atoms(t_moldyn *moldyn) { + + if(moldyn->atom) free(moldyn->atom); + + return 0; +} + +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -282,13 +307,15 @@ int thermal_init(t_moldyn *moldyn,t_random *random) { double v,sigma; t_3dvec p_total,delta; t_atom *atom; + t_random *random; atom=moldyn->atom; + random=&(moldyn->random); /* gaussian distribution of velocities */ v3_zero(&p_total); for(i=0;icount;i++) { - sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass); + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -311,44 +338,75 @@ int thermal_init(t_moldyn *moldyn,t_random *random) { } /* velocity scaling */ - scale_velocity(moldyn); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_moldyn *moldyn) { +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; t_atom *atom; + int count; atom=moldyn->atom; /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + /* get kinetic energy / temperature & count involved atoms */ e=0.0; + count=0; + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) + thermal_init(moldyn,equi_init); + else + return 0; /* no scaling needed */ + } + + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ for(i=0;icount;i++) - e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t)); - for(i=0;icount;i++) - v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c)); + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { @@ -356,23 +414,26 @@ double get_e_pot(t_moldyn *moldyn) { return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -380,15 +441,19 @@ t_3dvec get_total_p(t_atom *atom, int count) { return p_total; } -double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { double tau; - tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass)); - tau*=1.0E-9; - if(tautau) - printf("[moldyn] warning: time step (%f > %.15f)\n", - moldyn->tau,tau); + /* nn_dist is the nearest neighbour distance */ + + if(moldyn->t==5.0) { + printf("[moldyn] i do not estimate timesteps below %f K!\n", + MOLDYN_CRITICAL_EST_TEMP); + return 23.42; + } + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); return tau; } @@ -402,6 +467,10 @@ double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { int link_cell_init(t_moldyn *moldyn) { t_linkcell *lc; + int i; + int fd; + + fd=open("/dev/null",O_WRONLY); lc=&(moldyn->lc); @@ -413,7 +482,14 @@ int link_cell_init(t_moldyn *moldyn) { lc->nz=moldyn->dim.z/moldyn->cutoff; lc->z=moldyn->dim.z/lc->nz; - lc->subcell=malloc(lc->nx*lc->ny*lc->nz*sizeof(t_list)); + lc->cells=lc->nx*lc->ny*lc->nz; + lc->subcell=malloc(lc->cells*sizeof(t_list)); + + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); + + for(i=0;icells;i++) + //list_init(&(lc->subcell[i]),1); + list_init(&(lc->subcell[i]),fd); link_cell_update(moldyn); @@ -434,13 +510,13 @@ int link_cell_update(t_moldyn *moldyn) { ny=lc->ny; nz=lc->nz; - for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); for(count=0;countcount;count++) { - i=atom[count].r.x/lc->x; - j=atom[count].r.y/lc->y; - k=atom[count].r.z/lc->z; + i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; + j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; + k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), &(atom[count])); } @@ -456,12 +532,12 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { int ci,cj,ck; int nx,ny,nz; int x,y,z; - unsigned char bx,by,bz; + u8 bx,by,bz; lc=&(moldyn->lc); nx=lc->nx; ny=lc->ny; - nx=lc->nz; + nz=lc->nz; count1=1; count2=27; a=nx*ny; @@ -488,7 +564,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { z=(z+nz)%nz; bz=1; } - if(!(x|y|z)) continue; + if(!(ci|cj|ck)) continue; if(bx|by|bz) { cell[--count2]=lc->subcell[x+y*nx+z*a]; } @@ -499,7 +575,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } - return count2; + lc->dnlc=count1; + + return count1; } int link_cell_shutdown(t_moldyn *moldyn) { @@ -515,6 +593,42 @@ int link_cell_shutdown(t_moldyn *moldyn) { return 0; } +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->content_count); + + ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + moldyn->schedule.runs=ptr; + moldyn->schedule.runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + moldyn->schedule.tau=ptr; + moldyn->schedule.tau[count-1]=tau; + + return 0; +} + +int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { + + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + + return 0; +} + /* * * 'integration of newtons equation' - algorithms @@ -525,57 +639,87 @@ int link_cell_shutdown(t_moldyn *moldyn) { int moldyn_integrate(t_moldyn *moldyn) { - int i; - unsigned int e,m,s,d,v; + int i,sched; + unsigned int e,m,s,v; t_3dvec p; - + t_moldyn_schedule *schedule; + t_atom *atom; int fd; char fb[128]; + double ds; + + schedule=&(moldyn->schedule); + atom=moldyn->atom; + + /* initialize linked cell method */ + link_cell_init(moldyn); /* logging & visualization */ e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; - d=moldyn->dwrite; v=moldyn->vwrite; - if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { - printf("[moldyn] warning, lv system not initialized\n"); - return -1; - } - /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; - /* create the neighbour list */ - link_cell_update(moldyn); - /* calculate initial forces */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); - for(i=0;itime_steps;i++) { - /* show runs */ - printf("."); + /* some stupid checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + + /* zero absolute time */ + moldyn->time=0.0; - /* neighbour list update */ - link_cell_update(moldyn); + /* debugging, ignre */ + moldyn->debug=0; + + /* executing the schedule */ + for(sched=0;schedschedule.content_count;sched++) { + + /* setting amount of runs and finite time step size */ + moldyn->tau=schedule->tau[sched]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=schedule->runs[sched]; + + /* integration according to schedule */ + + for(i=0;itime_steps;i++) { /* integration step */ moldyn->integrate(moldyn); + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f %.45f %.45f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, get_total_energy(moldyn)); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn->atom,moldyn->count); + p=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f\n",moldyn->time, v3_norm(&p)); } } @@ -590,19 +734,28 @@ int moldyn_integrate(t_moldyn *moldyn) { write(fd,moldyn->atom, moldyn->count*sizeof(t_atom)); } + close(fd); } } - if(d) { - if(!(i%d)) - write(moldyn->dfd,moldyn->atom, - moldyn->count*sizeof(t_atom)); - - } if(v) { - if(!(i%v)) - visual_atoms(moldyn->visual,i*moldyn->tau, + if(!(i%v)) { + visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); + printf("\rsched: %d, steps: %d, theta: %d", + sched,i,moldyn->debug); + fflush(stdout); + } } + + } + + /* check for hooks */ + if(schedule->hook) + schedule->hook(moldyn,schedule->hook_params); + + /* get a new info line */ + printf("\n"); + } return 0; @@ -628,15 +781,18 @@ int velocity_verlet(t_moldyn *moldyn) { v3_add(&(atom[i].r),&(atom[i].r),&delta); v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass); v3_add(&(atom[i].r),&(atom[i].r),&delta); - v3_per_bound(&(atom[i].r),&(moldyn->dim)); + check_per_bound(moldyn,&(atom[i].r)); /* velocities */ v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass); v3_add(&(atom[i].v),&(atom[i].v),&delta); } + /* neighbour list update */ + link_cell_update(moldyn); + /* forces depending on chosen potential */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); for(i=0;ipot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; count=moldyn->count; + itom=moldyn->atom; + lc=&(moldyn->lc); + + /* reset energy */ + moldyn->energy=0.0; - u=0.0; + /* get energy and force of every atom */ for(i=0;ix; - nj=atom[i].r.y/lc->y; - nk=atom[i].r.z/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) + + /* reset force */ + v3_zero(&(itom[i].f)); + + /* single particle potential/force */ + if(itom[i].attr&ATOM_ATTR_1BP) + moldyn->func1b(moldyn,&(itom[i])); + + /* 2 body pair potential/force */ + if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + + link_cell_neighbour_index(moldyn, + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); + + dnlc=lc->dnlc; + + for(j=0;j<27;j++) { + + this=&(neighbour_i[j]); + list_reset(this); + + if(this->start==NULL) + continue; + + bc_ij=(jcurrent->data; + + if(jtom==&(itom[i])) + continue; + + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) + moldyn->func2b(moldyn, + &(itom[i]), + jtom, + bc_ij); + + /* 3 body potential/force */ + + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) + continue; + + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); + + /* get neighbours of i */ + for(k=0;k<27;k++) { + + that=&(neighbour_i2[k]); + list_reset(that); + + if(that->start==NULL) + continue; + + bc_ik=(kcurrent->data; + + if(!(ktom->attr&ATOM_ATTR_3BP)) continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - /* neighbours not doing boundary condition overflow */ - for(j=1;jstart!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - } - } + if(ktom==jtom) + continue; - /* neighbours due to boundary conditions */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); + if(ktom==&(itom[i])) + continue; + + moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ik|bc_ij); + + } while(list_next(that)!=\ + L_NO_NEXT_ELEMENT); + + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); + + /* 2bp post function */ + if(moldyn->func2b_post) { +printf("pre(%d): %.15f %.15f %.15f\n",i,itom[i].f.x,itom[i].r.x,itom[i].v.x); + moldyn->func2b_post(moldyn, + &(itom[i]), + jtom,bc_ij); +printf("post(%d): %.15f %.15f %.15f\n",i,itom[i].f.x,itom[i].r.x,itom[i].v.x); } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); } } } - moldyn->energy=u; + return 0; +} + +/* + * periodic boundayr checking + */ + +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + t_3dvec *dim; + + dim=&(moldyn->dim); + + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; + + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } + + return 0; +} + + +/* + * example potentials + */ + +/* harmonic oscillator potential and force */ + +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_ho_params *params; + t_3dvec force,distance; + double d; + double sc,equi_dist; + + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; + + v3_sub(&distance,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); + } return 0; } /* lennard jones potential & force for one sort of atoms */ -int lennard_jones(t_moldyn *moldyn) { +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; - t_atom *atom,*btom; - t_linkcell *lc; - t_list *this,neighbour[27]; - int i,j,c; - int count; t_3dvec force,distance; - double d,h1,h2,u; + double d,h1,h2; double eps,sig6,sig12; - int ni,nj,nk; - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; + params=moldyn->pot2b_params; eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; - u=0.0; - for(i=0;ix; - nj=atom[i].r.y/lc->y; - nk=atom[i].r.z/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=1.0/v3_absolute_square(&distance); /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - /* neighbours not doing boundary condition overflow */ - for(j=1;jstart!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - } - } + v3_sub(&distance,&(ai->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(ai->f),&(ai->f),&force); + } - /* neighbours due to boundary conditions */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h1=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=-h1+h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + return 0; +} - } - } +/* + * tersoff potential & force for 2 sorts of atoms + */ + +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + printf("[moldyn] tersoff mult parameter info:\n"); + printf(" S (m) | %.12f | %.12f | %.12f\n",p->S[0],p->S[1],p->Smixed); + printf(" R (m) | %.12f | %.12f | %.12f\n",p->R[0],p->R[1],p->Rmixed); + printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV); + printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV); + printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1], + p->lambda_m); + printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m); + printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]); + printf(" n | %f | %f\n",p->n[0],p->n[1]); + printf(" c | %f | %f\n",p->c[0],p->c[1]); + printf(" d | %f | %f\n",p->d[0],p->d[1]); + printf(" h | %f | %f\n",p->h[0],p->h[1]); + printf(" chi | %f \n",p->chi); + + return 0; +} + +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { + + int num; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + num=ai->bnum; + params=moldyn->pot1b_params; + exchange=&(params->exchange); + + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ + + exchange->beta=&(params->beta[num]); + exchange->n=&(params->n[num]); + exchange->c=&(params->c[num]); + exchange->d=&(params->d[num]); + exchange->h=&(params->h[num]); + + exchange->betan=pow(*(exchange->beta),*(exchange->n)); + exchange->n_betan=*(exchange->n)*exchange->betan; + exchange->c2=params->c[num]*params->c[num]; + exchange->d2=params->d[num]*params->d[num]; + exchange->c2d2=exchange->c2/exchange->d2; + + return 0; +} + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,force; + double d_ij; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; + int num; + double s_r; + double arg; + double scale; + + params=moldyn->pot2b_params; + num=ai->bnum; + exchange=&(params->exchange); + + exchange->run3bp=0; + exchange->run2bp_post=0; + + /* + * we need: f_c, df_c, f_r, df_r + * + * therefore we need: R, S, A, lambda + */ + + v3_sub(&dist_ij,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&dist_ij); + + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->d_ij=d_ij; + exchange->dist_ij=dist_ij; + exchange->d_ij2=d_ij*d_ij; + + /* constants */ + if(num==aj->bnum) { + S=params->S[num]; + R=params->R[num]; + A=params->A[num]; + B=params->B[num]; + lambda=params->lambda[num]; + mu=params->mu[num]; + params->exchange.chi=1.0; + } + else { + S=params->Smixed; + R=params->Rmixed; + A=params->Amixed; + B=params->Bmixed; + lambda=params->lambda_m; + mu=params->mu_m; + params->exchange.chi=params->chi; + } + if(d_ij>S) + return 0; + + f_r=A*exp(-lambda*d_ij); + df_r=-lambda*f_r/d_ij; + + /* f_a, df_a calc + save for later use */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=-mu*exchange->f_a/d_ij; + + if(d_ijenergy=u; + /* add forces */ + v3_add(&(ai->f),&(ai->f),&force); + /* energy is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); + + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; + + /* enable the run of 3bp function and 2bp post processing */ + exchange->run3bp=1; + exchange->run2bp_post=1; + + /* reset 3bp sums */ + exchange->sum1_3bp=0.0; + exchange->sum2_3bp=0.0; + v3_zero(&(exchange->db_ij)); + + return 0; +} + +/* tersoff 2 body post part */ + +int tersoff_mult_post_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + /* here we have to allow for the 3bp sums */ + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + t_3dvec force,temp,*db_ij,*dist_ij; + double db_ij_scale1,db_ij_scale2; + double b_ij; + double f_c,df_c,f_a,df_a; + double chi,betan; + double help; + double n; + + params=moldyn->pot2b_params; + exchange=&(params->exchange); + + /* we do not run if f_c_ij was detected to be 0! */ + if(!(exchange->run2bp_post)) + return 0; + + db_ij=&(exchange->db_ij); + f_c=exchange->f_c; + df_c=exchange->df_c; + f_a=exchange->f_a; + df_a=exchange->df_a; + betan=exchange->betan; + n=*(exchange->n); + chi=exchange->chi; + dist_ij=&(exchange->dist_ij); + + db_ij_scale1=(1+betan*exchange->sum1_3bp); + db_ij_scale2=(exchange->n_betan*exchange->sum2_3bp); + help=pow(db_ij_scale1,-1.0/(2*n)-1); + b_ij=chi*db_ij_scale1*help; + db_ij_scale1=-chi/(2*n)*help; +printf("debug: %.20f %.20f %.20f\n",db_ij->x,exchange->sum1_3bp,exchange->sum2_3bp); + + /* db_ij part */ + v3_scale(db_ij,db_ij,(db_ij_scale1*db_ij_scale2)); + v3_scale(db_ij,db_ij,f_a); + + /* df_a part */ + v3_scale(&temp,dist_ij,b_ij*df_a); + + /* db_ij + df_a part */ + v3_add(&force,&temp,db_ij); + v3_scale(&force,&force,f_c); + + /* df_c part */ + v3_scale(&temp,dist_ij,f_a*b_ij*df_c); + + /* add energy of 3bp sum */ + moldyn->energy+=(0.5*f_c*b_ij*f_a); + + /* add force of 3bp calculation (all three parts) */ + v3_add(&(ai->f),&temp,&force); + + return 0; +} + +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec temp,force; + double R,S,s_r; + double d_ij,d_ij2,d_ik,d_jk; + double f_c,df_c,f_a,df_a; + double f_c_ik,df_c_ik,arg; + double n,c,d,h; + double c2,d2,c2d2; + double numer,denom; + double theta,cos_theta,sin_theta; + double d_theta,d_theta1,d_theta2; + double h_cos,d2_h_cos2; + double frac,bracket,bracket_n_1,bracket_n; + double g; + int num; + + params=moldyn->pot3b_params; + num=ai->bnum; + exchange=&(params->exchange); + + if(!(exchange->run3bp)) + return 0; + + /* + * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a + * + * we got f_c, df_c, f_a, df_a from 2bp calculation + */ + + d_ij=exchange->d_ij; + d_ij2=exchange->d_ij2; + dist_ij=exchange->dist_ij; + + f_a=params->exchange.f_a; + df_a=params->exchange.df_a; + + f_c=exchange->f_c; + df_c=exchange->df_c; + /* d_ij is <= S, as we didn't return so far! */ + + /* + * calc of b_ij (scalar) and db_ij (vector) + * + * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta + * + * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik, + * w_ik, + * + */ + + v3_sub(&dist_ik,&(ai->r),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik=v3_norm(&dist_ik); + + /* constants for f_c_ik calc */ + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + } + else { + R=params->Rmixed; + S=params->Smixed; + } + + /* calc of f_c_ik */ + if(d_ik>S) { + f_c_ik=0.0; + df_c_ik=0.0; + } + else if(d_ikr),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk=v3_norm(&dist_jk); + + /* get exchange data */ + n=*(exchange->n); + c=*(exchange->c); + d=*(exchange->d); + h=*(exchange->h); + c2=exchange->c2; + d2=exchange->d2; + c2d2=exchange->c2d2; + + /* cosine of theta by scalaproduct, * + * derivation of theta by law of cosines! */ + numer=d_ij2+d_ik*d_ik-d_jk*d_jk; + denom=2*d_ij*d_ik; + cos_theta=numer/denom; + cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik); +printf("cos theta: %.25f\n",cos_theta); + + /* hack - cos theta machine accuracy problems! */ + if(cos_theta>1.0||cos_theta<-1.0) { + moldyn->debug++; + if(fabs(cos_theta)>1.0+ACCEPTABLE_ERROR) + printf("[moldyn] WARNING: cos theta failure!\n"); + if(cos_theta<0) + cos_theta=-1.0; + else + cos_theta=1.0; + printf("THETA CORRECTION\n"); + } + + sin_theta=sqrt(1.0-(cos_theta*cos_theta)); + theta=acos(cos_theta); + d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); + d_theta1=2*denom-numer*2*d_ik/d_ij; + d_theta2=2*denom-numer*2*d_ij/d_ik; + d_theta1*=d_theta; + d_theta2*=d_theta; +printf("FOO %.15f %.15f\n",sin_theta,cos_theta); + + h_cos=(h-cos_theta); + d2_h_cos2=d2+(h_cos*h_cos); + + frac=c2/(d2_h_cos2); + g=1.0+c2d2-frac; + + if(f_c_ik==0.0) { + bracket=0.0; + bracket_n_1=0.0; + bracket_n=0.0; + } + else { + bracket=f_c_ik*g; + bracket_n_1=pow(bracket,n-1.0); + bracket_n=bracket_n_1*bracket; + } + + /* calc of db_ij and the 2 sums */ + exchange->sum1_3bp+=bracket_n; + exchange->sum2_3bp+=bracket_n_1; + + /* derivation of theta */ + v3_scale(&force,&dist_ij,d_theta1); + v3_scale(&temp,&dist_ik,d_theta2); + v3_add(&force,&force,&temp); + +printf("DA:%.20f %.20f %.20f\n",d_theta1,force.x,temp.x); + /* part 1 of db_ij */ + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac/d2_h_cos2); + + /* part 2 of db_ij */ + v3_scale(&temp,&dist_ik,df_c_ik*g); + + /* sum up and add to db_ij */ + v3_add(&temp,&temp,&force); + v3_add(&(exchange->db_ij),&(exchange->db_ij),&temp); + return 0; }