X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=36086581e666b082c6a3d554706609800beafbb2;hb=ade81aa2afb15f22e98ed9595ff303d4fedfe122;hp=9d782d657fbc89c5ab800ed7705de48c87739a1e;hpb=76f807f6dda48b6d606309cea79005e612e4f665;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 9d782d6..3608658 100644 --- a/moldyn.c +++ b/moldyn.c @@ -71,9 +71,18 @@ int set_cutoff(t_moldyn *moldyn,double cutoff) { return 0; } -int set_temperature(t_moldyn *moldyn,double t) { - - moldyn->t=t; +int set_temperature(t_moldyn *moldyn,double t_ref) { + + moldyn->t_ref=t_ref; + + return 0; +} + +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { + + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; return 0; } @@ -93,6 +102,13 @@ int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { return 0; } +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; + + return 0; +} + int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { if(x) @@ -123,6 +139,14 @@ int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { return 0; } +int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params) { + + moldyn->func2b_post=func; + moldyn->pot2b_params=params; + + return 0; +} + int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { moldyn->func3b=func; @@ -185,17 +209,15 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, int count; int ret; t_3dvec origin; - t_atom *atom; count=a*b*c; - atom=moldyn->atom; if(type==FCC) count*=4; if(type==DIAMOND) count*=8; - atom=malloc(count*sizeof(t_atom)); - if(atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -204,10 +226,10 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -223,15 +245,18 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, } moldyn->count=count; + printf("[moldyn] created lattice with %d atoms\n",count); while(count) { - atom[count-1].element=element; - atom[count-1].mass=mass; - atom[count-1].attr=attr; - atom[count-1].bnum=bnum; count-=1; + moldyn->atom[count].element=element; + moldyn->atom[count].mass=mass; + moldyn->atom[count].attr=attr; + moldyn->atom[count].bnum=bnum; + check_per_bound(moldyn,&(moldyn->atom[count].r)); } + return ret; } @@ -270,7 +295,7 @@ int destroy_atoms(t_moldyn *moldyn) { return 0; } -int thermal_init(t_moldyn *moldyn) { +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -290,7 +315,7 @@ int thermal_init(t_moldyn *moldyn) { /* gaussian distribution of velocities */ v3_zero(&p_total); for(i=0;icount;i++) { - sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass); + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -313,16 +338,17 @@ int thermal_init(t_moldyn *moldyn) { } /* velocity scaling */ - scale_velocity(moldyn); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_moldyn *moldyn) { +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; t_atom *atom; + int count; atom=moldyn->atom; @@ -330,17 +356,41 @@ int scale_velocity(t_moldyn *moldyn) { * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ - if(moldyn->t==0.0) { - printf("[moldyn] no velocity scaling for T = 0 K\n"); - return -1; + /* get kinetic energy / temperature & count involved atoms */ + e=0.0; + count=0; + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) + thermal_init(moldyn,equi_init); + else + return 0; /* no scaling needed */ } - e=0.0; - for(i=0;icount;i++) - e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t)); + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ for(i=0;icount;i++) - v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c)); + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); return 0; } @@ -492,7 +542,6 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { count2=27; a=nx*ny; - cell[0]=lc->subcell[i+j*nx+k*a]; for(ci=-1;ci<=1;ci++) { bx=0; @@ -526,10 +575,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } - lc->dnlc=count2; - lc->countn=27; + lc->dnlc=count1; - return count2; + return count1; } int link_cell_shutdown(t_moldyn *moldyn) { @@ -596,9 +644,9 @@ int moldyn_integrate(t_moldyn *moldyn) { t_3dvec p; t_moldyn_schedule *schedule; t_atom *atom; - int fd; char fb[128]; + double ds; schedule=&(moldyn->schedule); atom=moldyn->atom; @@ -619,9 +667,24 @@ int moldyn_integrate(t_moldyn *moldyn) { /* calculate initial forces */ potential_force_calc(moldyn); + /* some stupid checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + /* zero absolute time */ moldyn->time=0.0; + /* debugging, ignre */ + moldyn->debug=0; + + /* executing the schedule */ for(sched=0;schedschedule.content_count;sched++) { /* setting amount of runs and finite time step size */ @@ -636,6 +699,10 @@ int moldyn_integrate(t_moldyn *moldyn) { /* integration step */ moldyn->integrate(moldyn); + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + /* increase absolute time */ moldyn->time+=moldyn->tau; @@ -674,7 +741,8 @@ int moldyn_integrate(t_moldyn *moldyn) { if(!(i%v)) { visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsched: %d, steps: %d",sched,i); + printf("\rsched: %d, steps: %d, theta: %d", + sched,i,moldyn->debug); fflush(stdout); } } @@ -685,6 +753,9 @@ int moldyn_integrate(t_moldyn *moldyn) { if(schedule->hook) schedule->hook(moldyn,schedule->hook_params); + /* get a new info line */ + printf("\n"); + } return 0; @@ -722,7 +793,6 @@ int velocity_verlet(t_moldyn *moldyn) { /* forces depending on chosen potential */ potential_force_calc(moldyn); - //moldyn->potential_force_function(moldyn); for(i=0;icount; - atom=moldyn->atom; + itom=moldyn->atom; lc=&(moldyn->lc); /* reset energy */ moldyn->energy=0.0; + /* get energy and force of every atom */ for(i=0;ifunc1b(moldyn,&(atom[i])); + if(itom[i].attr&ATOM_ATTR_1BP) + moldyn->func1b(moldyn,&(itom[i])); /* 2 body pair potential/force */ - if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { link_cell_neighbour_index(moldyn, - (atom[i].r.x+moldyn->dim.x/2)/lc->x, - (atom[i].r.y+moldyn->dim.y/2)/lc->y, - (atom[i].r.z+moldyn->dim.z/2)/lc->z, - neighbour); + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); - countn=lc->countn; dnlc=lc->dnlc; - for(j=0;jstart==NULL) continue; - bc=(jcurrent->data; + jtom=this->current->data; - if(btom==&(atom[i])) + if(jtom==&(itom[i])) continue; - if((btom->attr&ATOM_ATTR_2BP)& - (atom[i].attr&ATOM_ATTR_2BP)) + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) moldyn->func2b(moldyn, - &(atom[i]), - btom, - bc); + &(itom[i]), + jtom, + bc_ij); /* 3 body potential/force */ - if(!(atom[i].attr&ATOM_ATTR_3BP)|| - !(btom->attr&ATOM_ATTR_3BP)) + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) continue; - link_cell_neighbour_index(moldyn, - (btom->r.x+moldyn->dim.x/2)/lc->x, - (btom->r.y+moldyn->dim.y/2)/lc->y, - (btom->r.z+moldyn->dim.z/2)/lc->z, - neighbourk); + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); - for(k=0;kcountn;k++) { + /* get neighbours of i */ + for(k=0;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); + that=&(neighbour_i2[k]); + list_reset(that); - if(thisk->start==NULL) + if(that->start==NULL) continue; - bck=(kdnlc)?0:1; + bc_ik=(kcurrent->data; + ktom=that->current->data; if(!(ktom->attr&ATOM_ATTR_3BP)) continue; - if(ktom==btom) + if(ktom==jtom) continue; - if(ktom==&(atom[i])) + if(ktom==&(itom[i])) continue; - moldyn->func3b(moldyn,&(atom[i]),btom,ktom,bck); + moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ik|bc_ij); - } while(list_next(thisk)!=\ + } while(list_next(that)!=\ L_NO_NEXT_ELEMENT); } } while(list_next(this)!=L_NO_NEXT_ELEMENT); + + /* 2bp post function */ + if(moldyn->func2b_post) { +printf("pre(%d): %.15f %.15f %.15f\n",i,itom[i].f.x,itom[i].r.x,itom[i].v.x); + moldyn->func2b_post(moldyn, + &(itom[i]), + jtom,bc_ij); +printf("post(%d): %.15f %.15f %.15f\n",i,itom[i].f.x,itom[i].r.x,itom[i].v.x); + } + } } } @@ -957,6 +1038,35 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { * tersoff potential & force for 2 sorts of atoms */ +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + printf("[moldyn] tersoff mult parameter info:\n"); + printf(" S (m) | %.12f | %.12f | %.12f\n",p->S[0],p->S[1],p->Smixed); + printf(" R (m) | %.12f | %.12f | %.12f\n",p->R[0],p->R[1],p->Rmixed); + printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV); + printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV); + printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1], + p->lambda_m); + printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m); + printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]); + printf(" n | %f | %f\n",p->n[0],p->n[1]); + printf(" c | %f | %f\n",p->c[0],p->c[1]); + printf(" d | %f | %f\n",p->d[0],p->d[1]); + printf(" h | %f | %f\n",p->h[0],p->h[1]); + printf(" chi | %f \n",p->chi); + + return 0; +} + /* tersoff 1 body part */ int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { @@ -980,6 +1090,7 @@ int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { exchange->h=&(params->h[num]); exchange->betan=pow(*(exchange->beta),*(exchange->n)); + exchange->n_betan=*(exchange->n)*exchange->betan; exchange->c2=params->c[num]*params->c[num]; exchange->d2=params->d[num]*params->d[num]; exchange->c2d2=exchange->c2/exchange->d2; @@ -1007,6 +1118,7 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { exchange=&(params->exchange); exchange->run3bp=0; + exchange->run2bp_post=0; /* * we need: f_c, df_c, f_r, df_r @@ -1018,18 +1130,20 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { if(bc) check_per_bound(moldyn,&dist_ij); - /* save for use in 3bp */ /* REALLY ?!?!?! */ + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->d_ij=d_ij; exchange->dist_ij=dist_ij; + exchange->d_ij2=d_ij*d_ij; /* constants */ if(num==aj->bnum) { S=params->S[num]; R=params->R[num]; A=params->A[num]; + B=params->B[num]; lambda=params->lambda[num]; - /* more constants depending of atoms i and j, needed in 3bp */ - params->exchange.B=&(params->B[num]); - params->exchange.mu=&(params->mu[num]); mu=params->mu[num]; params->exchange.chi=1.0; } @@ -1037,26 +1151,18 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { S=params->Smixed; R=params->Rmixed; A=params->Amixed; + B=params->Bmixed; lambda=params->lambda_m; - /* more constants depending of atoms i and j, needed in 3bp */ - params->exchange.B=&(params->Bmixed); - params->exchange.mu=&(params->mu_m); mu=params->mu_m; params->exchange.chi=params->chi; } - - d_ij=v3_norm(&dist_ij); - - /* save for use in 3bp */ - exchange->d_ij=d_ij; - if(d_ij>S) return 0; f_r=A*exp(-lambda*d_ij); df_r=-lambda*f_r/d_ij; - /* f_a, df_a calc + save for 3bp use */ + /* f_a, df_a calc + save for later use */ exchange->f_a=-B*exp(-mu*d_ij); exchange->df_a=-mu*exchange->f_a/d_ij; @@ -1077,15 +1183,85 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { /* add forces */ v3_add(&(ai->f),&(ai->f),&force); - /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ - moldyn->energy+=(0.25*f_r*f_c); + /* energy is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); /* save for use in 3bp */ exchange->f_c=f_c; exchange->df_c=df_c; - /* enable the run of 3bp function */ + /* enable the run of 3bp function and 2bp post processing */ exchange->run3bp=1; + exchange->run2bp_post=1; + + /* reset 3bp sums */ + exchange->sum1_3bp=0.0; + exchange->sum2_3bp=0.0; + v3_zero(&(exchange->db_ij)); + + return 0; +} + +/* tersoff 2 body post part */ + +int tersoff_mult_post_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + /* here we have to allow for the 3bp sums */ + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + t_3dvec force,temp,*db_ij,*dist_ij; + double db_ij_scale1,db_ij_scale2; + double b_ij; + double f_c,df_c,f_a,df_a; + double chi,betan; + double help; + double n; + + params=moldyn->pot2b_params; + exchange=&(params->exchange); + + /* we do not run if f_c_ij was detected to be 0! */ + if(!(exchange->run2bp_post)) + return 0; + + db_ij=&(exchange->db_ij); + f_c=exchange->f_c; + df_c=exchange->df_c; + f_a=exchange->f_a; + df_a=exchange->df_a; + betan=exchange->betan; + n=*(exchange->n); + chi=exchange->chi; + dist_ij=&(exchange->dist_ij); + + db_ij_scale1=(1+betan*exchange->sum1_3bp); + db_ij_scale2=(exchange->n_betan*exchange->sum2_3bp); + help=pow(db_ij_scale1,-1.0/(2*n)-1); + b_ij=chi*db_ij_scale1*help; + db_ij_scale1=-chi/(2*n)*help; +printf("debug: %.20f %.20f %.20f\n",db_ij->x,exchange->sum1_3bp,exchange->sum2_3bp); + + /* db_ij part */ + v3_scale(db_ij,db_ij,(db_ij_scale1*db_ij_scale2)); + v3_scale(db_ij,db_ij,f_a); + + /* df_a part */ + v3_scale(&temp,dist_ij,b_ij*df_a); + + /* db_ij + df_a part */ + v3_add(&force,&temp,db_ij); + v3_scale(&force,&force,f_c); + + /* df_c part */ + v3_scale(&temp,dist_ij,f_a*b_ij*df_c); + + /* add energy of 3bp sum */ + moldyn->energy+=(0.5*f_c*b_ij*f_a); + + /* add force of 3bp calculation (all three parts) */ + v3_add(&(ai->f),&temp,&force); return 0; } @@ -1100,18 +1276,16 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { t_3dvec temp,force; double R,S,s_r; double d_ij,d_ij2,d_ik,d_jk; - double f_c,df_c,b_ij,f_a,df_a; + double f_c,df_c,f_a,df_a; double f_c_ik,df_c_ik,arg; - double scale; - double chi; - double n,c,d,h,beta,betan; + double n,c,d,h; double c2,d2,c2d2; double numer,denom; double theta,cos_theta,sin_theta; double d_theta,d_theta1,d_theta2; - double h_cos,h_cos2,d2_h_cos2; - double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; - double bracket3,bracket3_pow_1,bracket3_pow; + double h_cos,d2_h_cos2; + double frac,bracket,bracket_n_1,bracket_n; + double g; int num; params=moldyn->pot3b_params; @@ -1129,9 +1303,13 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { d_ij=exchange->d_ij; d_ij2=exchange->d_ij2; + dist_ij=exchange->dist_ij; f_a=params->exchange.f_a; df_a=params->exchange.df_a; + + f_c=exchange->f_c; + df_c=exchange->df_c; /* d_ij is <= S, as we didn't return so far! */ @@ -1145,7 +1323,6 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { * */ - v3_sub(&dist_ik,&(ai->r),&(ak->r)); if(bc) check_per_bound(moldyn,&dist_ik); d_ik=v3_norm(&dist_ik); @@ -1161,11 +1338,11 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { } /* calc of f_c_ik */ - if(d_ik>S) - return 0; - - if(d_ikS) { + f_c_ik=0.0; + df_c_ik=0.0; + } + else if(d_ikbeta); - betan=exchange->betan; + /* get exchange data */ n=*(exchange->n); c=*(exchange->c); d=*(exchange->d); @@ -1190,9 +1366,26 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { d2=exchange->d2; c2d2=exchange->c2d2; + /* cosine of theta by scalaproduct, * + * derivation of theta by law of cosines! */ numer=d_ij2+d_ik*d_ik-d_jk*d_jk; denom=2*d_ij*d_ik; cos_theta=numer/denom; + cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik); +printf("cos theta: %.25f\n",cos_theta); + + /* hack - cos theta machine accuracy problems! */ + if(cos_theta>1.0||cos_theta<-1.0) { + moldyn->debug++; + if(fabs(cos_theta)>1.0+ACCEPTABLE_ERROR) + printf("[moldyn] WARNING: cos theta failure!\n"); + if(cos_theta<0) + cos_theta=-1.0; + else + cos_theta=1.0; + printf("THETA CORRECTION\n"); + } + sin_theta=sqrt(1.0-(cos_theta*cos_theta)); theta=acos(cos_theta); d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); @@ -1200,52 +1393,44 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { d_theta2=2*denom-numer*2*d_ij/d_ik; d_theta1*=d_theta; d_theta2*=d_theta; +printf("FOO %.15f %.15f\n",sin_theta,cos_theta); h_cos=(h-cos_theta); - h_cos2=h_cos*h_cos; - d2_h_cos2=d2-h_cos2; - - /* some usefull expressions */ - frac1=c2/(d2-h_cos2); - bracket1=1+c2d2-frac1; - bracket2=f_c_ik*bracket1; - bracket2_n_1=pow(bracket2,n-1.0); - bracket2_n=bracket2_n_1*bracket2; - bracket3=1+betan*bracket2_n; - bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0); - bracket3_pow=bracket3_pow_1*bracket3; - - /* now go on with calc of b_ij and derivation of b_ij */ - b_ij=chi*bracket3_pow; + d2_h_cos2=d2+(h_cos*h_cos); + + frac=c2/(d2_h_cos2); + g=1.0+c2d2-frac; + + if(f_c_ik==0.0) { + bracket=0.0; + bracket_n_1=0.0; + bracket_n=0.0; + } + else { + bracket=f_c_ik*g; + bracket_n_1=pow(bracket,n-1.0); + bracket_n=bracket_n_1*bracket; + } + + /* calc of db_ij and the 2 sums */ + exchange->sum1_3bp+=bracket_n; + exchange->sum2_3bp+=bracket_n_1; /* derivation of theta */ v3_scale(&force,&dist_ij,d_theta1); v3_scale(&temp,&dist_ik,d_theta2); v3_add(&force,&force,&temp); - /* part 1 of derivation of b_ij */ - v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); +printf("DA:%.20f %.20f %.20f\n",d_theta1,force.x,temp.x); + /* part 1 of db_ij */ + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac/d2_h_cos2); - /* part 2 of derivation of b_ij */ - v3_scale(&temp,&dist_ik,df_c_ik*bracket1); + /* part 2 of db_ij */ + v3_scale(&temp,&dist_ik,df_c_ik*g); - /* sum up and scale ... */ + /* sum up and add to db_ij */ v3_add(&temp,&temp,&force); - scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n)); - v3_scale(&temp,&temp,scale); - - /* now construct an energy and a force out of that */ - v3_scale(&temp,&temp,f_a); - v3_scale(&force,&dist_ij,df_a*b_ij); - v3_add(&temp,&temp,&force); - v3_scale(&temp,&temp,f_c); - v3_scale(&force,&dist_ij,df_c*b_ij*f_a); - v3_add(&force,&force,&temp); - - /* add forces */ - v3_add(&(ai->f),&(ai->f),&force); - /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ - moldyn->energy+=(0.25*f_a*b_ij*f_c); + v3_add(&(exchange->db_ij),&(exchange->db_ij),&temp); return 0; }