X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=57f76c433ae7d431fc860dc51ddc21b6982a6d29;hb=06912ca45b46de412570a4bd5b5484aa9e8d6e6b;hp=ad0f9a383ea7ae3e01a5a7c3ebc67de518756dc6;hpb=e763f6e3072fbbbc5ecf7345b989d7d29929a38f;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index ad0f9a3..57f76c4 100644 --- a/moldyn.c +++ b/moldyn.c @@ -58,6 +58,7 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { int i; t_ho_params hop; t_lj_params ljp; + t_tersoff_params tp; double s,e; memset(moldyn,0,sizeof(t_moldyn)); @@ -81,10 +82,6 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { moldyn->mwrite=atoi(argv[++i]); strncpy(moldyn->mfb,argv[++i],64); break; - case 'D': - moldyn->dwrite=atoi(argv[++i]); - strncpy(moldyn->dfb,argv[++i],64); - break; case 'S': moldyn->swrite=atoi(argv[++i]); strncpy(moldyn->sfb,argv[++i],64); @@ -187,16 +184,6 @@ int moldyn_log_init(t_moldyn *moldyn) { if(moldyn->swrite) moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; - if(moldyn->dwrite) { - moldyn->dfd=open(moldyn->dfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->dfd<0) { - perror("[moldyn] dfd open"); - return moldyn->dfd; - } - write(moldyn->dfd,moldyn,sizeof(t_moldyn)); - moldyn->lvstat|=MOLDYN_LVSTAT_DUMP; - } - if((moldyn->vwrite)&&(vis)) { moldyn->visual=vis; visual_init(vis,moldyn->vfb); @@ -481,7 +468,7 @@ int link_cell_update(t_moldyn *moldyn) { for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { + for(count=0;countcount;count++) { i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; @@ -544,6 +531,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } + lc->dnlc=count2; + lc->countn=27; + return count2; } @@ -632,14 +622,9 @@ int moldyn_integrate(t_moldyn *moldyn) { write(fd,moldyn->atom, moldyn->count*sizeof(t_atom)); } + close(fd); } } - if(d) { - if(!(i%d)) - write(moldyn->dfd,moldyn->atom, - moldyn->count*sizeof(t_atom)); - - } if(v) { if(!(i%v)) { visual_atoms(moldyn->visual,i*moldyn->tau, @@ -687,7 +672,8 @@ printf("done\n"); /* forces depending on chosen potential */ printf("calc potential/force ...\n"); - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); + //moldyn->potential_force_function(moldyn); printf("done\n"); for(i=0;idim.x/2)/lc->x,\ + (atom[i].r.y+moldyn->dim.y/2)/lc->y,\ + (atom[i].r.z+moldyn->dim.z/2)/lc->z,\ + nb_list); + + +int potential_force_calc(t_moldyn *moldyn) { + + int i,count; + t_atom *atom; + t_linkcell *lc; + t_list neighbour[27]; + t_list *this; + double u; + + count=moldyn->count; + atom=moldyn->atom; + lc=&(moldyn->lc); + + /* reset energy */ + u=0.0; + + for(i=0;istatus&MOLDYN_STAT_1BP) + moldyn->pf_func1b(moldyn,&(atom[i])); + + /* 2 body pair potential/force */ + if(moldyn->status&MOLDYN_STAT_2BP) { + + CREATE_CELL_LIST(neighbour); + + /* + * processing cell of atom i + * => no need to check for empty list + * (1 element at minimum) + */ + + this=&(neighbour[0]); + list_reset(this); + do { + btom=this->current->data; + if(btom!=&(atom[i])) + moldyn->pf_func2b(moldyn, + &(atom[i]),btom); + } while(list_next(this)!=L_NO_NEXT_ELEMENT); + + /* + * direct neighbour cells + * => no boundary condition check necessary + */ + for(j=0;jdnlc;j++) { + this=&(neighbour[j]); + list_reset(this); + if(this->start!=NULL) { + do { + btom=this->current->data; + moldyn->pf_func2b(moldyn, + &(atom[i]), + btom); + } while(list_next(this)!=\ + L_NO_NEXT_ELEMENT); + } + + /* + * neighbour cells due to periodic bc + * => check boundary conditions + */ + for(j=lc->dnlc;jcountn;j++) { + this=&(neighbour[j]); + list_reset(this); + if(this->start!=NULL) { + do { + btom=this->current->data; + moldyn->pf_func2b(moldyn, + &(atom[i]), + btom); + + } + + } + + return 0; +} + + /* harmonic oscillator potential and force */ int harmonic_oscillator(t_moldyn *moldyn) { @@ -995,12 +1075,16 @@ int tersoff(t_moldyn *moldyn) { /* 2 body stuff */ + /* we need: f_c, df_c, f_r, df_r */ + v3_sub(&dist_ij,btom,&(atom[i])); d_ij=v3_norm(&dist_ij); if(d_ij<=S) { - S=; - R=; + /* determine the tersoff parameters */ + if(atom[i].element!=btom->element) { + S=sqrt(TERSOFF_S[e1]*TERSOFF_S[e2]); + R=R_m; A=; lambda=; B=; @@ -1010,8 +1094,10 @@ int tersoff(t_moldyn *moldyn) { betaN=; if(d_ij<=R) { - f_c=1.0; - df_c=0.0; + df_r=-lambda*A*exp(-lambda*d_ij)/d_ij; + v3_scale(&force,&dist_ij,df_r); + v3_add(&(atom[i].f),&(atom[i].f), + &force); } else { s_r=S-R; @@ -1019,7 +1105,11 @@ int tersoff(t_moldyn *moldyn) { f_c=0.5+0.5*cos(arg1); df_c=-0.5*sin(arg1)*(PI/(s_r*d_ij)); f_r=A*exp(-lambda*d_ij); - f_a=-B*exp(-mu*d_ij); + df_r=-lambda*f_r/d_ij; + scale=df_c*f_r+df_r*f_c; + v3_scale(&force,&dist_ij,scale); + v3_add(&(atom[i].f),&(atom[i].f), + &force); } } else @@ -1084,6 +1174,8 @@ int tersoff(t_moldyn *moldyn) { v3_sub(&distance_jk,ktom,btom); cos_theta=(d_ij2+d_ik*d_ik-d_jk*d_jk)/\ (2*d_ij*d_ik); + sin_theta=sqrt(1.0/\ + (cos_theta*cos_theta)); theta=arccos(cos_theta);