X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=7ea5d5080ab1ab185fa46b2137894239e9233902;hb=1d83ceb2ce2ff5150fd079f1066b7f583e38c8f4;hp=57f76c433ae7d431fc860dc51ddc21b6982a6d29;hpb=06912ca45b46de412570a4bd5b5484aa9e8d6e6b;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 57f76c4..7ea5d50 100644 --- a/moldyn.c +++ b/moldyn.c @@ -23,217 +23,206 @@ #include "visual/visual.h" #include "list/list.h" -int moldyn_usage(char **argv) { - - printf("\n%s usage:\n\n",argv[0]); - printf("--- general options ---\n"); - printf("-E (log total energy)\n"); - printf("-M (log total momentum)\n"); - printf("-D (dump total information)\n"); - printf("-S (single save file)\n"); - printf("-V (rasmol file)\n"); - printf("--- physics options ---\n"); - printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%.15f)\n",MOLDYN_TAU); - printf("-C [m] (%.15f)\n",MOLDYN_CUTOFF); - printf("-R (%d)\n",MOLDYN_RUNS); - printf(" -- integration algo --\n"); - printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); - printf(" 0: velocity verlet\n"); - printf(" -- potential --\n"); - printf(" -P \n"); - printf(" 0: harmonic oscillator\n"); - printf(" param1: spring constant\n"); - printf(" param2: equilibrium distance\n"); - printf(" 1: lennard jones\n"); - printf(" param1: epsilon\n"); - printf(" param2: sigma\n"); - printf("\n"); + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; + + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; return 0; } -int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { +int moldyn_shutdown(t_moldyn *moldyn) { - int i; - t_ho_params hop; - t_lj_params ljp; - t_tersoff_params tp; - double s,e; + printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); - memset(moldyn,0,sizeof(t_moldyn)); + return 0; +} + +int set_int_alg(t_moldyn *moldyn,u8 algo) { - /* default values */ - moldyn->t=MOLDYN_TEMP; - moldyn->tau=MOLDYN_TAU; - moldyn->time_steps=MOLDYN_RUNS; - moldyn->integrate=velocity_verlet; - moldyn->potential_force_function=lennard_jones; - - /* parse argv */ - for(i=1;iewrite=atoi(argv[++i]); - strncpy(moldyn->efb,argv[++i],64); - break; - case 'M': - moldyn->mwrite=atoi(argv[++i]); - strncpy(moldyn->mfb,argv[++i],64); - break; - case 'S': - moldyn->swrite=atoi(argv[++i]); - strncpy(moldyn->sfb,argv[++i],64); - break; - case 'V': - moldyn->vwrite=atoi(argv[++i]); - strncpy(moldyn->vfb,argv[++i],64); - break; - case 'T': - moldyn->t=atof(argv[++i]); - break; - case 't': - moldyn->tau=atof(argv[++i]); - break; - case 'C': - moldyn->cutoff=atof(argv[++i]); - break; - case 'R': - moldyn->time_steps=atoi(argv[++i]); - break; - case 'I': - /* integration algorithm */ - switch(atoi(argv[++i])) { + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; break; default: - printf("unknown integration algo %s\n",argv[i]); - moldyn_usage(argv); + printf("unknown integration algorithm: %02x\n",algo); return -1; } - case 'P': - /* potential + params */ - switch(atoi(argv[++i])) { - case MOLDYN_POTENTIAL_HO: - hop.spring_constant=atof(argv[++i]); - hop.equilibrium_distance=atof(argv[++i]); - moldyn->pot_params=malloc(sizeof(t_ho_params)); - memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); - moldyn->potential_force_function=harmonic_oscillator; - break; - case MOLDYN_POTENTIAL_LJ: - e=atof(argv[++i]); - s=atof(argv[++i]); - ljp.epsilon4=4*e; - ljp.sigma6=s*s*s*s*s*s; - ljp.sigma12=ljp.sigma6*ljp.sigma6; - moldyn->pot_params=malloc(sizeof(t_lj_params)); - memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); - moldyn->potential_force_function=lennard_jones; - break; - default: - printf("unknown potential %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } + return 0; +} - default: - printf("unknown option %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } - } else { - moldyn_usage(argv); - return -1; - } - } +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; return 0; } -int moldyn_log_init(t_moldyn *moldyn) { +int set_temperature(t_moldyn *moldyn,double t_ref) { - moldyn->lvstat=0; - t_visual *vis; + moldyn->t_ref=t_ref; - vis=&(moldyn->vis); + return 0; +} - if(moldyn->ewrite) { - moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->efd<0) { - perror("[moldyn] efd open"); - return moldyn->efd; - } - dprintf(moldyn->efd,"# moldyn total energy logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E; - } +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { - if(moldyn->mwrite) { - moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); - return moldyn->mfd; - } - dprintf(moldyn->mfd,"# moldyn total momentum logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M; - } + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; + + return 0; +} + +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { - if(moldyn->swrite) - moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; - if((moldyn->vwrite)&&(vis)) { - moldyn->visual=vis; - visual_init(vis,moldyn->vfb); - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; } - moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; + return 0; +} + +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; return 0; } -int moldyn_log_shutdown(t_moldyn *moldyn) { +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { - if(moldyn->efd) close(moldyn->efd); - if(moldyn->mfd) close(moldyn->efd); - if(moldyn->dfd) close(moldyn->efd); - if(moldyn->visual) visual_tini(moldyn->visual); + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; return 0; } -int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { - int ret; + moldyn->func1b=func; + moldyn->pot1b_params=params; - ret=moldyn_parse_argv(moldyn,argc,argv); - if(ret<0) return ret; + return 0; +} - ret=moldyn_log_init(moldyn); - if(ret<0) return ret; +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { - rand_init(&(moldyn->random),NULL,1); - moldyn->random.status|=RAND_STAT_VERBOSE; + moldyn->func2b=func; + moldyn->pot2b_params=params; + + return 0; +} - moldyn->status=0; +int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params) { + + moldyn->func2b_post=func; + moldyn->pot2b_params=params; return 0; } -int moldyn_shutdown(t_moldyn *moldyn) { +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { - moldyn_log_shutdown(moldyn); - rand_close(&(moldyn->random)); - free(moldyn->atom); + moldyn->func3b=func; + moldyn->pot3b_params=params; + + return 0; +} + +int moldyn_set_log_dir(t_moldyn *moldyn,char *dir) { + + strncpy(moldyn->vlsdir,dir,127); + + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,int timer) { + + char filename[128]; + int ret; + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + snprintf(filename,127,"%s/energy",moldyn->vlsdir); + moldyn->efd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->efd<0) { + perror("[moldyn] energy log fd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + snprintf(filename,127,"%s/momentum",moldyn->vlsdir); + moldyn->mfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->mfd<0) { + perror("[moldyn] momentum log fd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + ret=visual_init(&(moldyn->vis),moldyn->vlsdir); + if(ret<0) { + printf("[moldyn] visual init failure\n"); + return ret; + } + break; + default: + printf("[moldyn] unknown log mechanism: %02x\n",type); + return -1; + } + + return 0; +} + +int moldyn_log_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] log shutdown\n"); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); return 0; } -int create_lattice(unsigned char type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 bnum,int a,int b,int c) { int count; int ret; @@ -242,10 +231,11 @@ int create_lattice(unsigned char type,int element,double mass,double lc, count=a*b*c; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -254,10 +244,10 @@ int create_lattice(unsigned char type,int element,double mass,double lc, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -272,23 +262,58 @@ int create_lattice(unsigned char type,int element,double mass,double lc, return -1; } + moldyn->count=count; + printf("[moldyn] created lattice with %d atoms\n",count); + while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; count-=1; + moldyn->atom[count].element=element; + moldyn->atom[count].mass=mass; + moldyn->atom[count].attr=attr; + moldyn->atom[count].bnum=bnum; + check_per_bound(moldyn,&(moldyn->atom[count].r)); } + return ret; } -int destroy_lattice(t_atom *atom) { +int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, + t_3dvec *r,t_3dvec *v) { + + t_atom *atom; + void *ptr; + int count; + + atom=moldyn->atom; + count=++(moldyn->count); + + ptr=realloc(atom,count*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count-1].r=*r; + atom[count-1].v=*v; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].bnum=bnum; + atom[count-1].attr=attr; + + return 0; +} + +int destroy_atoms(t_moldyn *moldyn) { - if(atom) free(atom); + if(moldyn->atom) free(moldyn->atom); return 0; } -int thermal_init(t_moldyn *moldyn) { +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -308,7 +333,7 @@ int thermal_init(t_moldyn *moldyn) { /* gaussian distribution of velocities */ v3_zero(&p_total); for(i=0;icount;i++) { - sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass); + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -331,44 +356,78 @@ int thermal_init(t_moldyn *moldyn) { } /* velocity scaling */ - scale_velocity(moldyn); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_moldyn *moldyn) { +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; t_atom *atom; + int count; atom=moldyn->atom; /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + /* get kinetic energy / temperature & count involved atoms */ e=0.0; - for(i=0;icount;i++) - e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t)); - for(i=0;icount;i++) - v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c)); + count=0; + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) { + thermal_init(moldyn,equi_init); + return 0; + } + else + return 0; /* no scaling needed */ + } + + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); + } return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { @@ -376,23 +435,26 @@ double get_e_pot(t_moldyn *moldyn) { return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -400,15 +462,13 @@ t_3dvec get_total_p(t_atom *atom, int count) { return p_total; } -double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { double tau; - tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass)); - tau*=1.0E-9; - if(tautau) - printf("[moldyn] warning: time step (%f > %.15f)\n", - moldyn->tau,tau); + /* nn_dist is the nearest neighbour distance */ + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); return tau; } @@ -423,11 +483,11 @@ int link_cell_init(t_moldyn *moldyn) { t_linkcell *lc; int i; + int fd; - lc=&(moldyn->lc); + fd=open("/dev/null",O_WRONLY); - /* list log fd */ - lc->listfd=open("/dev/null",O_WRONLY); + lc=&(moldyn->lc); /* partitioning the md cell */ lc->nx=moldyn->dim.x/moldyn->cutoff; @@ -440,11 +500,11 @@ int link_cell_init(t_moldyn *moldyn) { lc->cells=lc->nx*lc->ny*lc->nz; lc->subcell=malloc(lc->cells*sizeof(t_list)); - printf("initializing linked cells (%d)\n",lc->cells); + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); for(i=0;icells;i++) //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i])); + list_init(&(lc->subcell[i]),fd); link_cell_update(moldyn); @@ -468,7 +528,7 @@ int link_cell_update(t_moldyn *moldyn) { for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { + for(count=0;countcount;count++) { i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; @@ -487,7 +547,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { int ci,cj,ck; int nx,ny,nz; int x,y,z; - unsigned char bx,by,bz; + u8 bx,by,bz; lc=&(moldyn->lc); nx=lc->nx; @@ -497,7 +557,6 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { count2=27; a=nx*ny; - cell[0]=lc->subcell[i+j*nx+k*a]; for(ci=-1;ci<=1;ci++) { bx=0; @@ -531,10 +590,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } - lc->dnlc=count2; - lc->countn=27; + lc->dnlc=count1; - return count2; + return count1; } int link_cell_shutdown(t_moldyn *moldyn) { @@ -547,11 +605,45 @@ int link_cell_shutdown(t_moldyn *moldyn) { for(i=0;inx*lc->ny*lc->nz;i++) list_shutdown(&(moldyn->lc.subcell[i])); - if(lc->listfd) close(lc->listfd); + return 0; +} + +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->content_count); + + ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + moldyn->schedule.runs=ptr; + moldyn->schedule.runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + moldyn->schedule.tau=ptr; + moldyn->schedule.tau[count-1]=tau; return 0; } +int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { + + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + + return 0; +} + /* * * 'integration of newtons equation' - algorithms @@ -562,12 +654,17 @@ int link_cell_shutdown(t_moldyn *moldyn) { int moldyn_integrate(t_moldyn *moldyn) { - int i; - unsigned int e,m,s,d,v; + int i,sched; + unsigned int e,m,s,v; t_3dvec p; - + t_moldyn_schedule *schedule; + t_atom *atom; int fd; - char fb[128]; + char dir[128]; + double ds; + + schedule=&(moldyn->schedule); + atom=moldyn->atom; /* initialize linked cell method */ link_cell_init(moldyn); @@ -576,46 +673,72 @@ int moldyn_integrate(t_moldyn *moldyn) { e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; - d=moldyn->dwrite; v=moldyn->vwrite; - if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { - printf("[moldyn] warning, lv system not initialized\n"); - return -1; - } - /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; /* calculate initial forces */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); + + /* some stupid checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + + /* zero absolute time */ + moldyn->time=0.0; + + /* debugging, ignore */ + moldyn->debug=0; + + /* executing the schedule */ + for(sched=0;schedschedule.content_count;sched++) { + + /* setting amount of runs and finite time step size */ + moldyn->tau=schedule->tau[sched]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=schedule->runs[sched]; + + /* integration according to schedule */ for(i=0;itime_steps;i++) { /* integration step */ moldyn->integrate(moldyn); + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f\n",i*moldyn->tau, + "%f %f %f %f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, get_total_energy(moldyn)); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn->atom,moldyn->count); + p=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",i*moldyn->tau, - v3_norm(&p)); + "%f %f\n",moldyn->time,v3_norm(&p)); } } if(s) { if(!(i%s)) { - snprintf(fb,128,"%s-%f-%.15f.save",moldyn->sfb, - moldyn->t,i*moldyn->tau); - fd=open(fb,O_WRONLY|O_TRUNC|O_CREAT); + snprintf(dir,128,"%s/s-%07.f.save", + moldyn->vlsdir,moldyn->time); + fd=open(dir,O_WRONLY|O_TRUNC|O_CREAT); if(fd<0) perror("[moldyn] save fd open"); else { write(fd,moldyn,sizeof(t_moldyn)); @@ -627,12 +750,26 @@ int moldyn_integrate(t_moldyn *moldyn) { } if(v) { if(!(i%v)) { - visual_atoms(moldyn->visual,i*moldyn->tau, + visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsteps: %d",i); + printf("\rsched: %d, steps: %d, debug: %d", + sched,i,moldyn->debug); fflush(stdout); } } + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + + } + + /* check for hooks */ + if(schedule->hook) + schedule->hook(moldyn,schedule->hook_params); + + /* get a new info line */ + printf("\n"); + } return 0; @@ -658,7 +795,7 @@ int velocity_verlet(t_moldyn *moldyn) { v3_add(&(atom[i].r),&(atom[i].r),&delta); v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass); v3_add(&(atom[i].r),&(atom[i].r),&delta); - v3_per_bound(&(atom[i].r),&(moldyn->dim)); + check_per_bound(moldyn,&(atom[i].r)); /* velocities */ v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass); @@ -666,15 +803,10 @@ int velocity_verlet(t_moldyn *moldyn) { } /* neighbour list update */ -printf("list update ...\n"); link_cell_update(moldyn); -printf("done\n"); /* forces depending on chosen potential */ -printf("calc potential/force ...\n"); potential_force_calc(moldyn); - //moldyn->potential_force_function(moldyn); -printf("done\n"); for(i=0;idim.x/2)/lc->x,\ - (atom[i].r.y+moldyn->dim.y/2)/lc->y,\ - (atom[i].r.z+moldyn->dim.z/2)/lc->z,\ - nb_list); - - int potential_force_calc(t_moldyn *moldyn) { - int i,count; - t_atom *atom; + int i,j,k,count; + t_atom *itom,*jtom,*ktom; t_linkcell *lc; - t_list neighbour[27]; - t_list *this; - double u; + t_list neighbour_i[27]; + t_list neighbour_i2[27]; + //t_list neighbour_j[27]; + t_list *this,*that; + u8 bc_ij,bc_ik; + int dnlc; count=moldyn->count; - atom=moldyn->atom; + itom=moldyn->atom; lc=&(moldyn->lc); /* reset energy */ - u=0.0; + moldyn->energy=0.0; + /* get energy and force of every atom */ for(i=0;istatus&MOLDYN_STAT_1BP) - moldyn->pf_func1b(moldyn,&(atom[i])); - - /* 2 body pair potential/force */ - if(moldyn->status&MOLDYN_STAT_2BP) { - - CREATE_CELL_LIST(neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list - * (1 element at minimum) - */ - - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom!=&(atom[i])) - moldyn->pf_func2b(moldyn, - &(atom[i]),btom); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + if(itom[i].attr&ATOM_ATTR_1BP) + moldyn->func1b(moldyn,&(itom[i])); - /* - * direct neighbour cells - * => no boundary condition check necessary - */ - for(j=0;jdnlc;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { - do { - btom=this->current->data; - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom); - } while(list_next(this)!=\ - L_NO_NEXT_ELEMENT); - } + if(!(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP))) + continue; - /* - * neighbour cells due to periodic bc - * => check boundary conditions - */ - for(j=lc->dnlc;jcountn;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { - do { - btom=this->current->data; - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom); - - } - - } - - return 0; -} + /* 2 body pair potential/force */ + + link_cell_neighbour_index(moldyn, + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); + dnlc=lc->dnlc; -/* harmonic oscillator potential and force */ + for(j=0;j<27;j++) { -int harmonic_oscillator(t_moldyn *moldyn) { + this=&(neighbour_i[j]); + list_reset(this); - t_ho_params *params; - t_atom *atom,*btom; - t_linkcell *lc; - t_list *this,neighbour[27]; - int i,j,c; - int count; - t_3dvec force,distance; - double d,u; - double sc,equi_dist; - int ni,nj,nk; + if(this->start==NULL) + continue; - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; - count=moldyn->count; + bc_ij=(jcurrent->data; - for(i=0;idim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list (1 element at minimum) - */ - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + if(jtom==&(itom[i])) + continue; - /* - * direct neighbour cells - * => no boundary condition check necessary - */ - for(j=1;jstart!=NULL) { + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) + moldyn->func2b(moldyn, + &(itom[i]), + jtom, + bc_ij); - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* 3 body potential/force */ - } - } + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) + continue; - /* - * indirect neighbour cells - * => check boundary conditions - */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* get neighbours of i */ + for(k=0;k<27;k++) { - } - } - } + that=&(neighbour_i2[k]); + list_reset(that); + + if(that->start==NULL) + continue; - moldyn->energy=0.5*u; + bc_ik=(kcurrent->data; - t_lj_params *params; - t_atom *atom,*btom; - t_linkcell *lc; - t_list *this,neighbour[27]; - int i,j,c; - int count; - t_3dvec force,distance; - double d,h1,h2,u; - double eps,sig6,sig12; - int ni,nj,nk; + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; - eps=params->epsilon4; - sig6=params->sigma6; - sig12=params->sigma12; + if(ktom==jtom) + continue; - /* reset energy counter */ - u=0.0; + if(ktom==&(itom[i])) + continue; - for(i=0;idim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* 1/r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + moldyn->func3b(moldyn, + &(itom[i]), + jtom, + ktom, + bc_ik|bc_ij); - /* neighbours not doing boundary condition overflow */ - for(j=1;jstart!=NULL) { + } while(list_next(that)!=\ + L_NO_NEXT_ELEMENT); - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - } - } - - /* neighbours due to boundary conditions */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); + /* 2bp post function */ + if(moldyn->func2b_post) { + moldyn->func2b_post(moldyn, + &(itom[i]), + jtom,bc_ij); } + } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - } + } + } - moldyn->energy=0.5*u; - return 0; } -/* tersoff potential & force for 2 sorts of atoms */ - -int tersoff(t_moldyn *moldyn) { +/* + * periodic boundayr checking + */ - t_tersoff_params *params; - t_atom *atom,*btom,*ktom; - t_linkcell *lc; - t_list *this,*thisk,neighbour[27],neighbourk[27]; - int i,j,k,c,ck; - int count; - double u; - int ni,nj,nk; - int ki,kj,kk; +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + double x,y,z; + t_3dvec *dim; - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; - - /* reset energy counter */ - u=0.0; + dim=&(moldyn->dim); - for(i=0;idim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list (1 element at minimum) - */ - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; - /* 2 body stuff */ - - /* we need: f_c, df_c, f_r, df_r */ - - v3_sub(&dist_ij,btom,&(atom[i])); - d_ij=v3_norm(&dist_ij); - if(d_ij<=S) { - - /* determine the tersoff parameters */ - if(atom[i].element!=btom->element) { - S=sqrt(TERSOFF_S[e1]*TERSOFF_S[e2]); - R=R_m; - A=; - lambda=; - B=; - mu=; - chi=; - beta=; - betaN=; - - if(d_ij<=R) { - df_r=-lambda*A*exp(-lambda*d_ij)/d_ij; - v3_scale(&force,&dist_ij,df_r); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - else { - s_r=S-R; - arg1=PI*(d_ij-R)/s_r; - f_c=0.5+0.5*cos(arg1); - df_c=-0.5*sin(arg1)*(PI/(s_r*d_ij)); - f_r=A*exp(-lambda*d_ij); - df_r=-lambda*f_r/d_ij; - scale=df_c*f_r+df_r*f_c; - v3_scale(&force,&dist_ij,scale); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } - else - continue; - - - /* end 2 body stuff */ - - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); - - /* go for zeta - 3 body stuff! */ - zeta=0.0; - d_ij2=d_ij*d_ij; - - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ - - v3_sub(&dist_ik,ktom,&(atom[i])); - d_ik=v3_norm(&dist_ik); - if(d_ik<=Sik) { - - Rik=; - Sik=; - Aik=; - lambda_ik=; - Bik=; - mu_ik=; - omega_ik=; - c_i=; - d_i=; - h_i=; - - - if(d_ik<=Rik) { - f_cik=1.0; - df_cik=0.0; - } - else { - sik_rik=Sik-Rik; - arg1ik=PI*(d_ik-Rik)/sik_rik; - f_cik=0.5+0.5*cos(arg1ik); - df_cik=-0.5*sin(arg1ik)* \ - (PI/(sik_rik*d_ik)); - f_rik=Aik*exp(-lambda_ik*d_ik); - f_aik=-Bik*exp(-mu_ik*d_ik); - } - - v3_sub(&distance_jk,ktom,btom); - cos_theta=(d_ij2+d_ik*d_ik-d_jk*d_jk)/\ - (2*d_ij*d_ik); - sin_theta=sqrt(1.0/\ - (cos_theta*cos_theta)); - theta=arccos(cos_theta); + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } - - } - else - continue; + return 0; +} + - /* end 3 body stuff (1) */ +/* + * example potentials + */ +/* harmonic oscillator potential and force */ - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { + t_ho_params *params; + t_3dvec force,distance; + double d; + double sc,equi_dist; - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; + + v3_sub(&distance,&(aj->r),&(ai->r)); + + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + /* f = -grad E; grad r_ij = -1 1/r_ij distance */ + v3_scale(&force,&distance,sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); + } - /* 3 body stuff (2) */ + return 0; +} - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +/* lennard jones potential & force for one sort of atoms */ + +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - } - } + t_lj_params *params; + t_3dvec force,distance; + double d,h1,h2; + double eps,sig6,sig12; - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { + params=moldyn->pot2b_params; + eps=params->epsilon4; + sig6=params->sigma6; + sig12=params->sigma12; - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + v3_sub(&distance,&(aj->r),&(ai->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,-1.0*d); /* f = - grad E */ + v3_add(&(ai->f),&(ai->f),&force); + } - /* 3 body stuff */ + return 0; +} - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +/* + * tersoff potential & force for 2 sorts of atoms + */ - } - } +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + printf("[moldyn] tersoff mult parameter info:\n"); + printf(" S (A) | %f | %f | %f\n",p->S[0],p->S[1],p->Smixed); + printf(" R (A) | %f | %f | %f\n",p->R[0],p->R[1],p->Rmixed); + printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV); + printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV); + printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1], + p->lambda_m); + printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m); + printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]); + printf(" n | %f | %f\n",p->n[0],p->n[1]); + printf(" c | %f | %f\n",p->c[0],p->c[1]); + printf(" d | %f | %f\n",p->d[0],p->d[1]); + printf(" h | %f | %f\n",p->h[0],p->h[1]); + printf(" chi | %f \n",p->chi); + return 0; +} - } while(list_next(this)!=L_NO_NEXT_ELEMENT); +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { - /* - * direct neighbour cells of atom i - */ - for(j=1;jstart!=NULL) { + int num; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + num=ai->bnum; + params=moldyn->pot1b_params; + exchange=&(params->exchange); - do { - btom=this->current->data; + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ - /* 2 body stuff */ + exchange->beta_i=&(params->beta[num]); + exchange->n_i=&(params->n[num]); + exchange->c_i=&(params->c[num]); + exchange->d_i=&(params->d[num]); + exchange->h_i=&(params->h[num]); + exchange->betaini=pow(*(exchange->beta_i),*(exchange->n_i)); + exchange->ci2=params->c[num]*params->c[num]; + exchange->di2=params->d[num]*params->d[num]; + exchange->ci2di2=exchange->ci2/exchange->di2; - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); + return 0; +} + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,force; + double d_ij; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; + int num; + double s_r; + double arg; + + params=moldyn->pot2b_params; + num=aj->bnum; + exchange=&(params->exchange); + + /* clear 3bp and 2bp post run */ + exchange->run3bp=0; + exchange->run2bp_post=0; + + /* reset S > r > R mark */ + exchange->d_ij_between_rs=0; + + /* + * calc of 2bp contribution of V_ij and dV_ij/ji + * + * for Vij and dV_ij we need: + * - f_c_ij, df_c_ij + * - f_r_ij, df_r_ij + * + * for dV_ji we need: + * - f_c_ji = f_c_ij, df_c_ji = df_c_ij + * - f_r_ji = f_r_ij; df_r_ji = df_r_ij + * + */ - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ + /* dist_ij, d_ij */ + v3_sub(&dist_ij,&(aj->r),&(ai->r)); + if(bc) check_per_bound(moldyn,&dist_ij); + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->d_ij=d_ij; + exchange->dist_ij=dist_ij; + + /* constants */ + if(num==ai->bnum) { + S=params->S[num]; + R=params->R[num]; + A=params->A[num]; + B=params->B[num]; + lambda=params->lambda[num]; + mu=params->mu[num]; + exchange->chi=1.0; + } + else { + S=params->Smixed; + R=params->Rmixed; + A=params->Amixed; + B=params->Bmixed; + lambda=params->lambda_m; + mu=params->mu_m; + params->exchange.chi=params->chi; + } - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + /* if d_ij > S => no force & potential energy contribution */ + if(d_ij>S) + return 0; + + /* more constants */ + exchange->beta_j=&(params->beta[num]); + exchange->n_j=&(params->n[num]); + exchange->c_j=&(params->c[num]); + exchange->d_j=&(params->d[num]); + exchange->h_j=&(params->h[num]); + if(num==ai->bnum) { + exchange->betajnj=exchange->betaini; + exchange->cj2=exchange->ci2; + exchange->dj2=exchange->di2; + exchange->cj2dj2=exchange->ci2di2; + } + else { + exchange->betajnj=pow(*(exchange->beta_j),*(exchange->n_j)); + exchange->cj2=params->c[num]*params->c[num]; + exchange->dj2=params->d[num]*params->d[num]; + exchange->cj2dj2=exchange->cj2/exchange->dj2; + } - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { + /* f_r_ij = f_r_ji, df_r_ij = df_r_ji */ + f_r=A*exp(-lambda*d_ij); + df_r=lambda*f_r/d_ij; + + /* f_a, df_a calc (again, same for ij and ji) | save for later use! */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=-mu*exchange->f_a/d_ij; + + /* f_c, df_c calc (again, same for ij and ji) */ + if(d_ij r > R */ + exchange->d_ij_between_rs=1; + } - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + /* add forces of 2bp (ij, ji) contribution + * dVij = dVji and we sum up both: no 1/2) */ + v3_add(&(ai->f),&(ai->f),&force); - /* 3 body stuff (2) */ + /* energy 2bp contribution (ij, ji) is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; - } - } + /* enable the run of 3bp function and 2bp post processing */ + exchange->run3bp=1; + exchange->run2bp_post=1; - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { + /* reset 3bp sums */ + exchange->zeta_ij=0.0; + exchange->zeta_ji=0.0; + v3_zero(&(exchange->dzeta_ij)); + v3_zero(&(exchange->dzeta_ji)); - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + return 0; +} - /* 3 body stuff (3) */ +/* tersoff 2 body post part */ - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +int tersoff_mult_post_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - } - } + /* + * here we have to allow for the 3bp sums + * + * that is: + * - zeta_ij, dzeta_ij + * - zeta_ji, dzeta_ji + * + * to compute the 3bp contribution to: + * - Vij, dVij + * - dVji + * + */ + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + t_3dvec force,temp; + t_3dvec *dist_ij; + double b,db,tmp; + double f_c,df_c,f_a,df_a; + double chi,ni,betaini,nj,betajnj; + double zeta; + + params=moldyn->pot2b_params; + exchange=&(params->exchange); + + /* we do not run if f_c_ij was detected to be 0! */ + if(!(exchange->run2bp_post)) + return 0; + + f_c=exchange->f_c; + df_c=exchange->df_c; + f_a=exchange->f_a; + df_a=exchange->df_a; + betaini=exchange->betaini; + betajnj=exchange->betajnj; + ni=*(exchange->n_i); + nj=*(exchange->n_j); + chi=exchange->chi; + dist_ij=&(exchange->dist_ij); + + /* Vij and dVij */ + zeta=exchange->zeta_ij; + if(zeta==0.0) { + moldyn->debug++; /* just for debugging ... */ + db=0.0; + b=chi; + v3_scale(&force,dist_ij,df_a*b*f_c); + } + else { + tmp=betaini*pow(zeta,ni-1.0); /* beta^n * zeta^n-1 */ + b=(1+zeta*tmp); /* 1 + beta^n zeta^n */ + db=chi*pow(b,-1.0/(2*ni)-1); /* x(...)^(-1/2n - 1) */ + b=db*b; /* b_ij */ + db*=-0.5*tmp; /* db_ij */ + v3_scale(&force,&(exchange->dzeta_ij),f_a*db); + v3_scale(&temp,dist_ij,df_a*b); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,f_c); + } + v3_scale(&temp,dist_ij,df_c*b*f_a); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,-0.5); + + /* add force */ + v3_add(&(ai->f),&(ai->f),&force); + + /* add energy of 3bp sum */ + moldyn->energy+=(0.5*f_c*b*f_a); + + /* dVji */ + zeta=exchange->zeta_ji; + if(zeta==0.0) { + moldyn->debug++; + b=chi; + v3_scale(&force,dist_ij,df_a*b*f_c); + } + else { + tmp=betajnj*pow(zeta,nj-1.0); /* beta^n * zeta^n-1 */ + b=(1+zeta*tmp); /* 1 + beta^n zeta^n */ + db=chi*pow(b,-1.0/(2*nj)-1); /* x(...)^(-1/2n - 1) */ + b=db*b; /* b_ij */ + db*=-0.5*tmp; /* db_ij */ + v3_scale(&force,&(exchange->dzeta_ji),f_a*db); + v3_scale(&temp,dist_ij,df_a*b); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,f_c); + } + v3_scale(&temp,dist_ij,df_c*b*f_a); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,-0.5); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* add force */ + v3_sub(&(ai->f),&(ai->f),&force); - } - } + return 0; +} - /* - * indirect neighbour cells of atom i - */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec temp1,temp2; + t_3dvec *dzeta; + double R,S,s_r; + double B,mu; + double d_ij,d_ik,d_jk; + double rr,dd; + double f_c,df_c; + double f_c_ik,df_c_ik,arg; + double f_c_jk; + double n,c,d,h; + double c2,d2,c2d2; + double cos_theta,d_costheta1,d_costheta2; + double h_cos,d2_h_cos2; + double frac,g,zeta,chi; + double tmp; + int num; + + params=moldyn->pot3b_params; + exchange=&(params->exchange); + + if(!(exchange->run3bp)) + return 0; - do { - btom=this->current->data; + /* + * calc of 3bp contribution of V_ij and dV_ij/ji/jk & + * 2bp contribution of dV_jk + * + * for Vij and dV_ij we still need: + * - b_ij, db_ij (zeta_ij) + * - f_c_ik, df_c_ik, constants_i, cos_theta_ijk, d_costheta_ijk + * + * for dV_ji we still need: + * - b_ji, db_ji (zeta_ji) + * - f_c_jk, d_c_jk, constants_j, cos_theta_jik, d_costheta_jik + * + * for dV_jk we need: + * - f_c_jk + * - f_a_jk + * - db_jk (zeta_jk) + * - f_c_ji, df_c_ji, constants_j, cos_theta_jki, d_costheta_jki + * + */ - /* 2 body stuff */ + /* + * get exchange data + */ + /* dist_ij, d_ij - this is < S_ij ! */ + dist_ij=exchange->dist_ij; + d_ij=exchange->d_ij; - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); + /* f_c_ij, df_c_ij (same for ji) */ + f_c=exchange->f_c; + df_c=exchange->df_c; - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ + /* + * calculate unknown values now ... + */ - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + /* V_ij and dV_ij stuff (in b_ij there is f_c_ik) */ - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { + /* dist_ik, d_ik */ + v3_sub(&dist_ik,&(ak->r),&(ai->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik=v3_norm(&dist_ik); - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + /* ik constants */ + num=ai->bnum; + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + } + else { + R=params->Rmixed; + S=params->Smixed; + } - /* 3 body stuff (2) */ + /* zeta_ij/dzeta_ij contribution only for d_ik < S */ + if(d_ikn_i); + c=*(exchange->c_i); + d=*(exchange->d_i); + h=*(exchange->h_i); + c2=exchange->ci2; + d2=exchange->di2; + c2d2=exchange->ci2di2; + + /* cosine of theta_ijk by scalaproduct */ + rr=v3_scalar_product(&dist_ij,&dist_ik); + dd=d_ij*d_ik; + cos_theta=rr/dd; + + /* d_costheta */ + tmp=1.0/dd; + d_costheta1=cos_theta/(d_ij*d_ij)-tmp; + d_costheta2=cos_theta/(d_ik*d_ik)-tmp; + + /* some usefull values */ + h_cos=(h-cos_theta); + d2_h_cos2=d2+(h_cos*h_cos); + frac=c2/(d2_h_cos2); + + /* g(cos_theta) */ + g=1.0+c2d2-frac; + + /* d_costheta_ij and dg(cos_theta) - needed in any case! */ + v3_scale(&temp1,&dist_ij,d_costheta1); + v3_scale(&temp2,&dist_ik,d_costheta2); + v3_add(&temp1,&temp1,&temp2); + v3_scale(&temp1,&temp1,-2.0*frac*h_cos/d2_h_cos2); /* dg */ + + /* f_c_ik & df_c_ik + {d,}zeta contribution */ + dzeta=&(exchange->dzeta_ij); + if(d_ik f_c_ik=1.0; + // => df_c_ik=0.0; of course we do not set this! + + /* zeta_ij */ + exchange->zeta_ij+=g; + + /* dzeta_ij */ + v3_add(dzeta,dzeta,&temp1); + } + else { + /* {d,}f_c_ik */ + s_r=S-R; + arg=M_PI*(d_ik-R)/s_r; + f_c_ik=0.5+0.5*cos(arg); + df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik)); + + /* zeta_ij */ + exchange->zeta_ij+=f_c_ik*g; + + /* dzeta_ij */ + v3_scale(&temp1,&temp1,f_c_ik); + v3_scale(&temp2,&dist_ik,g*df_c_ik); + v3_add(&temp1,&temp1,&temp2); + v3_add(dzeta,dzeta,&temp1); + } + } - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + /* dV_ji stuff (in b_ji there is f_c_jk) + dV_jk stuff! */ + + /* dist_jk, d_jk */ + v3_sub(&dist_jk,&(ak->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk=v3_norm(&dist_jk); + + /* jk constants */ + num=aj->bnum; + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + B=params->B[num]; + mu=params->mu[num]; + chi=1.0; + } + else { + R=params->Rmixed; + S=params->Smixed; + B=params->Bmixed; + mu=params->mu_m; + chi=params->chi; + } - } - } + /* zeta_ji/dzeta_ji contribution only for d_jk < S_jk */ + if(d_jkn_j); + c=*(exchange->c_j); + d=*(exchange->d_j); + h=*(exchange->h_j); + c2=exchange->cj2; + d2=exchange->dj2; + c2d2=exchange->cj2dj2; + + /* cosine of theta_jik by scalaproduct */ + rr=v3_scalar_product(&dist_ij,&dist_jk); /* times -1 */ + dd=d_ij*d_jk; + cos_theta=rr/dd; + + /* d_costheta */ + d_costheta1=1.0/(d_jk*d_ij); + d_costheta2=cos_theta/(d_ij*d_ij); /* in fact -cos(), but ^ */ + + /* some usefull values */ + h_cos=(h-cos_theta); + d2_h_cos2=d2+(h_cos*h_cos); + frac=c2/(d2_h_cos2); + + /* g(cos_theta) */ + g=1.0+c2d2-frac; + + /* d_costheta_ij and dg(cos_theta) - needed in any case! */ + v3_scale(&temp1,&dist_jk,d_costheta1); + v3_scale(&temp2,&dist_ij,-d_costheta2); /* ji -> ij => -1 */ + v3_add(&temp1,&temp1,&temp2); + v3_scale(&temp1,&temp1,-2.0*frac*h_cos/d2_h_cos2); /* dg */ + + /* f_c_jk + {d,}zeta contribution (df_c_jk = 0) */ + dzeta=&(exchange->dzeta_ji); + if(d_jkzeta_ji+=g; + + /* dzeta_ji */ + v3_add(dzeta,dzeta,&temp1); + } + else { + /* f_c_jk */ + s_r=S-R; + arg=M_PI*(d_jk-R)/s_r; + f_c_jk=0.5+0.5*cos(arg); + + /* zeta_ji */ + exchange->zeta_ji+=f_c_jk*g; + + /* dzeta_ij */ + v3_scale(&temp1,&temp1,f_c_jk); + v3_add(dzeta,dzeta,&temp1); + } - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { + /* dV_jk stuff | add force contribution on atom i immediately */ + if(exchange->d_ij_between_rs) { + zeta=f_c*g; + v3_scale(&temp1,&temp1,f_c); + v3_scale(&temp2,&dist_ij,df_c); + v3_add(&temp1,&temp1,&temp2); + } + else { + zeta=g; + // dzeta_jk is simply dg, which is temp1 + } + /* betajnj * zeta_jk ^ nj-1 */ + tmp=exchange->betajnj*pow(zeta,(n-1.0)); + tmp=-chi/2.0*pow(1+tmp*zeta,-1.0/(2.0*n)-1)*tmp; + v3_scale(&temp1,&temp1,tmp*B*exp(-mu*d_jk)*f_c_jk*0.5); + v3_add(&(ai->f),&(ai->f),&temp1); /* -1 skipped in f_a calc ^ */ + /* scaled with 0.5 ^ */ + } - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + return 0; +} - /* 3 body stuff (3) */ - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +/* + * debugging / critical check functions + */ - } - } +int moldyn_bc_check(t_moldyn *moldyn) { + t_atom *atom; + t_3dvec *dim; + int i; - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + atom=moldyn->atom; + dim=&(moldyn->dim); - } - } - + for(i=0;icount;i++) { + if(atom[i].r.x>=dim->x/2||-atom[i].r.x>dim->x/2) + printf("FATAL: atom %d: x: %.20f (%.20f)\n", + i,atom[i].r.x*1e10,dim->x/2*1e10); + if(atom[i].r.y>=dim->y/2||-atom[i].r.y>dim->y/2) + printf("FATAL: atom %d: y: %.20f (%.20f)\n", + i,atom[i].r.y*1e10,dim->y/2*1e10); + if(atom[i].r.z>=dim->z/2||-atom[i].r.z>dim->z/2) + printf("FATAL: atom %d: z: %.20f (%.20f)\n", + i,atom[i].r.z*1e10,dim->z/2*1e10); } - moldyn->energy=0.5*u; - return 0; }