X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=830b8f044cbab93357598b57f59180b17f4c5d45;hb=47bc224440051c430cefe4b82a7fb320ba76eba4;hp=f2ac637e64dfeb99ba82946b70a6242175ade88f;hpb=792f14f95b47989f7f12df0ea70b54619be016ee;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index f2ac637..830b8f0 100644 --- a/moldyn.c +++ b/moldyn.c @@ -21,6 +21,7 @@ #include "init/init.h" #include "random/random.h" #include "visual/visual.h" +#include "list/list.h" int moldyn_usage(char **argv) { @@ -30,10 +31,23 @@ int moldyn_usage(char **argv) { printf("-M (log total momentum)\n"); printf("-D (dump total information)\n"); printf("-S (single save file)\n"); + printf("-V (rasmol file)\n"); printf("--- physics options ---\n"); printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%f)\n",MOLDYN_TAU); + printf("-t [s] (%.15f)\n",MOLDYN_TAU); + printf("-C [m] (%.15f)\n",MOLDYN_CUTOFF); printf("-R (%d)\n",MOLDYN_RUNS); + printf(" -- integration algo --\n"); + printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); + printf(" 0: velocity verlet\n"); + printf(" -- potential --\n"); + printf(" -P \n"); + printf(" 0: harmonic oscillator\n"); + printf(" param1: spring constant\n"); + printf(" param2: equilibrium distance\n"); + printf(" 1: lennard jones\n"); + printf(" param1: epsilon\n"); + printf(" param2: sigma\n"); printf("\n"); return 0; @@ -42,6 +56,10 @@ int moldyn_usage(char **argv) { int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { int i; + t_ho_params hop; + t_lj_params ljp; + t_tersoff_params tp; + double s,e; memset(moldyn,0,sizeof(t_moldyn)); @@ -49,6 +67,8 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { moldyn->t=MOLDYN_TEMP; moldyn->tau=MOLDYN_TAU; moldyn->time_steps=MOLDYN_RUNS; + moldyn->integrate=velocity_verlet; + moldyn->potential_force_function=lennard_jones; /* parse argv */ for(i=1;imwrite=atoi(argv[++i]); strncpy(moldyn->mfb,argv[++i],64); break; - case 'D': - moldyn->dwrite=atoi(argv[++i]); - strncpy(moldyn->dfb,argv[++i],64); - break; case 'S': moldyn->swrite=atoi(argv[++i]); strncpy(moldyn->sfb,argv[++i],64); break; - case 'T': + case 'V': + moldyn->vwrite=atoi(argv[++i]); + strncpy(moldyn->vfb,argv[++i],64); break; + case 'T': moldyn->t=atof(argv[++i]); + break; case 't': moldyn->tau=atof(argv[++i]); break; + case 'C': + moldyn->cutoff=atof(argv[++i]); + break; case 'R': moldyn->time_steps=atoi(argv[++i]); break; + case 'I': + /* integration algorithm */ + switch(atoi(argv[++i])) { + case MOLDYN_INTEGRATE_VERLET: + moldyn->integrate=velocity_verlet; + break; + default: + printf("unknown integration algo %s\n",argv[i]); + moldyn_usage(argv); + return -1; + } + + case 'P': + /* potential + params */ + switch(atoi(argv[++i])) { + case MOLDYN_POTENTIAL_HO: + hop.spring_constant=atof(argv[++i]); + hop.equilibrium_distance=atof(argv[++i]); + moldyn->pot_params=malloc(sizeof(t_ho_params)); + memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); + moldyn->potential_force_function=harmonic_oscillator; + break; + case MOLDYN_POTENTIAL_LJ: + e=atof(argv[++i]); + s=atof(argv[++i]); + ljp.epsilon4=4*e; + ljp.sigma6=s*s*s*s*s*s; + ljp.sigma12=ljp.sigma6*ljp.sigma6; + moldyn->pot_params=malloc(sizeof(t_lj_params)); + memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); + moldyn->potential_force_function=lennard_jones; + break; + default: + printf("unknown potential %s\n",argv[i]); + moldyn_usage(argv); + return -1; + } + default: printf("unknown option %s\n",argv[i]); moldyn_usage(argv); @@ -96,6 +157,9 @@ int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { int moldyn_log_init(t_moldyn *moldyn) { moldyn->lvstat=0; + t_visual *vis; + + vis=&(moldyn->vis); if(moldyn->ewrite) { moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); @@ -120,23 +184,55 @@ int moldyn_log_init(t_moldyn *moldyn) { if(moldyn->swrite) moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; - if(moldyn->dwrite) { - moldyn->dfd=open(moldyn->dfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->dfd<0) { - perror("[moldyn] dfd open"); - return moldyn->dfd; - } - write(moldyn->dfd,moldyn,sizeof(t_moldyn)); - moldyn->lvstat|=MOLDYN_LVSTAT_DUMP; + if((moldyn->vwrite)&&(vis)) { + moldyn->visual=vis; + visual_init(vis,moldyn->vfb); + moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; } - if(moldyn->dwrite) - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; + moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; return 0; } -int create_lattice(unsigned char type,int element,double mass,double lc, +int moldyn_log_shutdown(t_moldyn *moldyn) { + + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->efd); + if(moldyn->dfd) close(moldyn->efd); + if(moldyn->visual) visual_tini(moldyn->visual); + + return 0; +} + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + int ret; + + ret=moldyn_parse_argv(moldyn,argc,argv); + if(ret<0) return ret; + + ret=moldyn_log_init(moldyn); + if(ret<0) return ret; + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; + + moldyn->status=0; + + return 0; +} + +int moldyn_shutdown(t_moldyn *moldyn) { + + moldyn_log_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); + + return 0; +} + +int create_lattice(u8 type,int element,double mass,double lc, int a,int b,int c,t_atom **atom) { int count; @@ -192,7 +288,7 @@ int destroy_lattice(t_atom *atom) { return 0; } -int thermal_init(t_moldyn *moldyn,t_random *random,int count) { +int thermal_init(t_moldyn *moldyn) { /* * - gaussian distribution of velocities @@ -204,12 +300,14 @@ int thermal_init(t_moldyn *moldyn,t_random *random,int count) { double v,sigma; t_3dvec p_total,delta; t_atom *atom; + t_random *random; atom=moldyn->atom; + random=&(moldyn->random); /* gaussian distribution of velocities */ v3_zero(&p_total); - for(i=0;icount;i++) { sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); @@ -226,19 +324,19 @@ int thermal_init(t_moldyn *moldyn,t_random *random,int count) { } /* zero total momentum */ - v3_scale(&p_total,&p_total,1.0/count); - for(i=0;icount); + for(i=0;icount;i++) { v3_scale(&delta,&p_total,1.0/atom[i].mass); v3_sub(&(atom[i].v),&(atom[i].v),&delta); } /* velocity scaling */ - scale_velocity(moldyn,count); + scale_velocity(moldyn); return 0; } -int scale_velocity(t_moldyn *moldyn,int count) { +int scale_velocity(t_moldyn *moldyn) { int i; double e,c; @@ -250,10 +348,10 @@ int scale_velocity(t_moldyn *moldyn,int count) { * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ e=0.0; - for(i=0;icount;i++) e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - c=sqrt((2.0*e)/(3.0*count*K_BOLTZMANN*moldyn->t)); - for(i=0;icount*K_BOLTZMANN*moldyn->t)); + for(i=0;icount;i++) v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c)); return 0; @@ -275,7 +373,7 @@ double get_e_kin(t_atom *atom,int count) { double get_e_pot(t_moldyn *moldyn) { - return(moldyn->potential(moldyn)); + return moldyn->energy; } double get_total_energy(t_moldyn *moldyn) { @@ -315,6 +413,144 @@ double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { return tau; } +/* + * numerical tricks + */ + +/* linked list / cell method */ + +int link_cell_init(t_moldyn *moldyn) { + + t_linkcell *lc; + int i; + + lc=&(moldyn->lc); + + /* list log fd */ + lc->listfd=open("/dev/null",O_WRONLY); + + /* partitioning the md cell */ + lc->nx=moldyn->dim.x/moldyn->cutoff; + lc->x=moldyn->dim.x/lc->nx; + lc->ny=moldyn->dim.y/moldyn->cutoff; + lc->y=moldyn->dim.y/lc->ny; + lc->nz=moldyn->dim.z/moldyn->cutoff; + lc->z=moldyn->dim.z/lc->nz; + + lc->cells=lc->nx*lc->ny*lc->nz; + lc->subcell=malloc(lc->cells*sizeof(t_list)); + + printf("initializing linked cells (%d)\n",lc->cells); + + for(i=0;icells;i++) + //list_init(&(lc->subcell[i]),1); + list_init(&(lc->subcell[i])); + + link_cell_update(moldyn); + + return 0; +} + +int link_cell_update(t_moldyn *moldyn) { + + int count,i,j,k; + int nx,ny,nz; + t_atom *atom; + t_linkcell *lc; + + atom=moldyn->atom; + lc=&(moldyn->lc); + + nx=lc->nx; + ny=lc->ny; + nz=lc->nz; + + for(i=0;icells;i++) + list_destroy(&(moldyn->lc.subcell[i])); + + for(count=0;countcount;count++) { + i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; + j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; + k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; + list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), + &(atom[count])); + } + + return 0; +} + +int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { + + t_linkcell *lc; + int a; + int count1,count2; + int ci,cj,ck; + int nx,ny,nz; + int x,y,z; + u8 bx,by,bz; + + lc=&(moldyn->lc); + nx=lc->nx; + ny=lc->ny; + nz=lc->nz; + count1=1; + count2=27; + a=nx*ny; + + + cell[0]=lc->subcell[i+j*nx+k*a]; + for(ci=-1;ci<=1;ci++) { + bx=0; + x=i+ci; + if((x<0)||(x>=nx)) { + x=(x+nx)%nx; + bx=1; + } + for(cj=-1;cj<=1;cj++) { + by=0; + y=j+cj; + if((y<0)||(y>=ny)) { + y=(y+ny)%ny; + by=1; + } + for(ck=-1;ck<=1;ck++) { + bz=0; + z=k+ck; + if((z<0)||(z>=nz)) { + z=(z+nz)%nz; + bz=1; + } + if(!(ci|cj|ck)) continue; + if(bx|by|bz) { + cell[--count2]=lc->subcell[x+y*nx+z*a]; + } + else { + cell[count1++]=lc->subcell[x+y*nx+z*a]; + } + } + } + } + + lc->dnlc=count2; + lc->countn=27; + + return count2; +} + +int link_cell_shutdown(t_moldyn *moldyn) { + + int i; + t_linkcell *lc; + + lc=&(moldyn->lc); + + for(i=0;inx*lc->ny*lc->nz;i++) + list_shutdown(&(moldyn->lc.subcell[i])); + + if(lc->listfd) close(lc->listfd); + + return 0; +} /* * @@ -328,31 +564,39 @@ int moldyn_integrate(t_moldyn *moldyn) { int i; unsigned int e,m,s,d,v; - unsigned char lvstat; t_3dvec p; int fd; char fb[128]; + /* initialize linked cell method */ + link_cell_init(moldyn); + + /* logging & visualization */ e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; d=moldyn->dwrite; v=moldyn->vwrite; - if(!(lvstat&MOLDYN_LVSTAT_INITIALIZED)) { + if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { printf("[moldyn] warning, lv system not initialized\n"); return -1; } + /* sqaure of some variables */ + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; + /* calculate initial forces */ - moldyn->force(moldyn); + moldyn->potential_force_function(moldyn); for(i=0;itime_steps;i++) { + /* integration step */ moldyn->integrate(moldyn); - /* check for log & visualiziation */ + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, @@ -378,18 +622,16 @@ int moldyn_integrate(t_moldyn *moldyn) { write(fd,moldyn->atom, moldyn->count*sizeof(t_atom)); } + close(fd); } } - if(d) { - if(!(i%d)) - write(moldyn->dfd,moldyn->atom, - moldyn->count*sizeof(t_atom)); - - } if(v) { - if(!(i%v)) + if(!(i%v)) { visual_atoms(moldyn->visual,i*moldyn->tau, moldyn->atom,moldyn->count); + printf("\rsteps: %d",i); + fflush(stdout); + } } } @@ -408,8 +650,7 @@ int velocity_verlet(t_moldyn *moldyn) { atom=moldyn->atom; count=moldyn->count; tau=moldyn->tau; - - tau_square=tau*tau; + tau_square=moldyn->tau_square; for(i=0;iforce(moldyn); +printf("calc potential/force ...\n"); + potential_force_calc(moldyn); + //moldyn->potential_force_function(moldyn); +printf("done\n"); for(i=0;ipot_params; - atom=moldyn->atom; - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; count=moldyn->count; + atom=moldyn->atom; + lc=&(moldyn->lc); + + /* reset energy */ + moldyn->energy=0.0; - u=0.0; for(i=0;ipf_func1b(moldyn,&(atom[i])); + + /* 2 body pair potential/force */ + if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + + link_cell_neighbour_index(moldyn, + (atom[i].r.x+moldyn->dim.x/2)/lc->x, + (atom[i].r.y+moldyn->dim.y/2)/lc->y, + (atom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour); + + countn=lc->countn; + dnlc=lc->dnlc; + + for(j=0;jstart==NULL) + continue; + + bc=(jcurrent->data; + + if(btom==&(atom[i])) + continue; + + if((btom->attr&ATOM_ATTR_2BP)& + (atom[i].attr&ATOM_ATTR_2BP)) + moldyn->pf_func2b(moldyn, + &(atom[i]), + btom, + bc); + + /* 3 body potential/force */ + + if(!(atom[i].attr&ATOM_ATTR_3BP)|| + !(btom->attr&ATOM_ATTR_3BP)) + continue; + + link_cell_neighbour_index(moldyn, + (btom->r.x+moldyn->dim.x/2)/lc->x, + (btom->r.y+moldyn->dim.y/2)/lc->y, + (btom->r.z+moldyn->dim.z/2)/lc->z, + neighbourk); + + for(k=0;kcountn;k++) { + + thisk=&(neighbourk[k]); + list_reset(thisk); + + if(thisk->start==NULL) + continue; + + bck=(kdnlc)?0:1; + + do { + + ktom=thisk->current->data; + + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; + + if(ktom==btom) + continue; + + if(ktom==&(atom[i])) + continue; + + moldyn->pf_func3b(moldyn,&(atom[i]),btom,ktom,bck); + + } while(list_next(thisk)!=\ + L_NO_NEXT_ELEMENT); + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); + } } } - return u; + return 0; } -int force_harmonic_oscillator(t_moldyn *moldyn) { +/* + * periodic boundayr checking + */ + +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; + + if(moldyn->MOLDYN_ATTR_PBX) + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + if(moldyn->MOLDYN_ATTR_PBY) + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + if(moldyn->MOLDYN_ATTR_PBZ) + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + + return 0; +} + + +/* + * example potentials + */ + +/* harmonic oscillator potential and force */ + +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { t_ho_params *params; - int i,j,count; - t_atom *atom; - t_3dvec distance; - t_3dvec force; + t_3dvec force,distance; double d; double sc,equi_dist; - atom=moldyn->atom; - count=moldyn->count; - params=moldyn->pot_params; + params=moldyn->pot2b_params; sc=params->spring_constant; equi_dist=params->equilibrium_distance; - for(i=0;idim)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - v3_scale(&force,&distance, - (-sc*(1.0-(equi_dist/d)))); - v3_add(&(atom[i].f),&(atom[i].f),&force); - v3_sub(&(atom[j].f),&(atom[j].f),&force); - } - } + v3_sub(&distance,&(ai->r),&(aj->r); + + v3_per_bound(&distance,&(moldyn->dim)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); } return 0; } - /* lennard jones potential & force for one sort of atoms */ -double potential_lennard_jones(t_moldyn *moldyn) { +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; - t_atom *atom; - int i,j; - int count; - t_3dvec distance; - double d,help; - double u; + t_3dvec force,distance; + double d,h1,h2,u; double eps,sig6,sig12; params=moldyn->pot_params; - atom=moldyn->atom; - count=moldyn->count; - eps=params->epsilon; + eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; - u=0.0; - for(i=0;ir),&(aj->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(ai->f),&(aj->f),&force); } + + return 0; +} + +/* + * tersoff potential & force for 2 sorts of atoms + */ + +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { + + int num; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; - return u; + num=ai->bnum; + params=moldyn->pot1b_params; + exchange=&(params->exchange); + + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ + + exchange->beta=&(params->beta[num]); + exchange->n=&(params->n[num]); + exchange->c=&(params->c[num]); + exchange->d=&(params->d[num]); + exchange->h=&(params->h[num]); + + exchange->c2=params->c[num]*params->c[num]; + exchange->d2=params->d[num]*params->d[num]; + exchange->c2d2=exchange->c2/exchange->d2; + + return 0; } + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { -int force_lennard_jones(t_moldyn *moldyn) { + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij; + double d_ij; + double A,B,R,S,lambda; + int num; - t_lj_params *params; - int i,j,count; - t_atom *atom; - t_3dvec distance; - t_3dvec force; - double d,h1,h2; - double eps,sig6,sig12; + params=moldyn->pot_params; + num=ai->bnum; + exchange=&(params->exchange); + + exchange->run3bp=0; + + /* + * we need: f_c, df_c, f_r, df_r + * + * therefore we need: R, S, A, lambda + */ + + v3_sub(&dist_ij,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&dist_ij); + + /* save for use in 3bp */ /* REALLY ?!?!?! */ + exchange->dist_ij=dist_ij; + + /* constants */ + if(num==aj->bnum) { + S=params->S[num]; + R=params->R[num]; + A=params->A[num]; + lambda=params->lambda[num]; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->B[num]); + params->exchange.mu=params->mu[num]; + params->exchange.chi=1.0; + } + else { + S=params->Smixed; + R=params->Rmixed; + A=params->Amixed; + lambda=params->lambda_m; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->Bmixed); + params->exchange.mu=&(params->mu_m); + params->exchange.chi=params->chi; + } + + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->d_ij=d_ij; + + if(d_ij>S) + return 0; + + f_r=A*exp(-lamda*d_ij); + df_r=-lambda*f_r/d_ij; + + /* f_a, df_a calc + save for 3bp use */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=-mu*exchange->f_a/d_ij; + + if(d_ijf),&(ai->f),&force); + /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ + moldyn->energy+=(0.25*f_r*f_c); + + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; + + /* enable the run of 3bp function */ + exchange->run3bp=1; + + return 0; +} + +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec db_ij,temp,force; + double R,S,s_r; + double d_ij,d_ik,d_jk; + double f_c,df_c,b_ij,f_a,df_a; + double B,mu; + int num; - atom=moldyn->atom; - count=moldyn->count; params=moldyn->pot_params; - eps=params->epsilon; - sig6=params->sigma6; - sig12=params->sigma12; + num=ai->bnum; + exchange=params->exchange; - for(i=0;irun3bp)) + return 0; - for(i=0;idim)); - d=v3_absolute_square(&distance); - if(d<=moldyn->cutoff_square) { - h1=1.0/d; /* 1/r^2 */ - d=h1*h1; /* 1/r^4 */ - h2=d*d; /* 1/r^8 */ - h1*=d; /* 1/r^6 */ - h1*=h2; /* 1/r^14 */ - h1*=sig12; - h2*=sig6; - d=12.0*h1-6.0*h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[j].f),&(atom[j].f),&force); - v3_sub(&(atom[i].f),&(atom[i].f),&force); - } - } + /* + * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a + * + * we got f_c, df_c, f_a, df_a from 2bp calculation + */ + + d_ij=exchange->d_ij; + d_ij2=exchange->d_ij2; + + B=*(params->exchange.B); + mu=*(params->exchange.mu); + + f_a=params->exchange.f_a; + df_a=params->exchange.df_a; + + /* d_ij is <= S, as we didn't return so far! */ + + /* + * calc of b_ij (scalar) and db_ij (vector) + * + * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta + * + * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik, + * w_ik, + * + */ + + + v3_sub(&dist_ik,&(aj->i),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik=v3_norm(&dist_ik); + + /* constants for f_c_ik calc */ + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + } + else { + R=params->Rmixed; + S=params->Smixed; } + /* calc of f_c_ik */ + if(d_ik>S) + return 0; + + if(d_ikr),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk=v3_norm(&dist_jk); + + + // GO ON HERE !!! + + cos_theta=(d_ij2+d_ik*d_ik-d_jk*d_jk)/(2*d_ij*d_ik); + sin_theta=sqrt(1.0-(cos_theta*cos_theta)); + theta=arccos(cos_theta); + + h_cos=(h-cos_theta); + h_cos2=h_cos*h_cos; + d2_h_cos2=d2-h_cos2; + + /* add forces */ + v3_add(&(ai->f),&(ai->f),&force); + /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ + moldyn->energy+=(0.25*f_a*b_ij*f_c); + return 0; }