X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=nlsop%2Fdiplom%2Fsimulation.tex;h=c68cf28cf7c8b0d07b1c1b35686dd9489f8a1c62;hb=c08f44df4506facdd6ad25395c61fe0a39ee6a77;hp=be0aa84f71f25eebd4b2fe7bb5135a64d2ee793b;hpb=d94dc0c755708e1ba960e0679c3314adc81840d1;p=lectures%2Flatex.git diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index be0aa84..c68cf28 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -33,6 +33,9 @@ Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau). Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert. + Die Ausdehnung des Targets in $x,y$-Richtung ist im Gegensatz zur Tiefe sehr gross und kann als unendlich ausgedehnt angenommen werden. + Um die Anzahl der W"urfel in diese Richtungen in der Simulation, aus Gr"unden der Rechenzeit, m"oglichst klein halten zu k"onen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet. + \subsection{Amorphisierung und Rekristallisation} \label{subsection:a_and_r} @@ -104,6 +107,10 @@ Die Parameter sind ebenfalls frei w"ahlbar. Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen. + Prinzipiell sollte man den Kohlenstoff"ubertrag abh"angig von dem bereits vorhandenen Kohlenstoff in dem amorphen Volumen bestimmen. + Da die implantierte Dosis maximal die St"ochiometridosis und der Parameter $d_r$ gro"s genug gew"ahlt ist, kommt es nicht zur "Ubers"attigung. + Der Kohlenstoff in kristallinen Gebieten ist also immer bestrebt in amorphe Gebiete zu diffundieren um die sehr viel geringere S"attigung im Kristallinen zu reduzieren. + \subsection{Sputtern} Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. @@ -189,6 +196,7 @@ Es wird mit einem komplett kristallinen und kohlenstofffreien Target gestartet. \subsection{Amorphisierung und Rekristallisation} + \label{subsection:a_r_step} Im ersten Schritt sollen die Kollisionen und die daraus resultierende Amorphisierung beziehungsweise Rekristallisation simuliert werden. Zun"achst muss das gestossene Volumen ausgew"ahlt werden. @@ -198,7 +206,7 @@ Eine weitere, mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} erzeugte Zufallszahl $r_3 \in [0,Z[$ entsprechend der nuklearen Bremskraft, abgebildet auf die ganze Zahl $m$, legt die Tiefe des getroffenen Volumens fest. Somit hat man den Otrsvektor $\vec{r}(k,l,m)$ f"ur den Amorphisierungs- oder Rekristallisationsvorgang festgelegt. Nun kann die Amorphisierungs- beziehungsweise Rekristallisationswahrscheinlichkeit nach \eqref{eq:p_ca_local} beziehungsweise \eqref{eq:p_ac_genau} berechnet werden. - Eine weiter Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens. + Eine weitere Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens. Es gibt folgende M"oglichkeiten: \begin{enumerate} \item Volumen $\vec{r}(k,l,m)$ ist kristallin.\\ @@ -222,9 +230,71 @@ \subsection{Diffusion und Sputtern} + Die Diffusions-Routine ist wie folgt realisiert. + Die Simulation geht der Reihe nach alle Volumina durch. + Im Falle eines amorphen Volumens werden aus direkt anliegenden kristallinen Volumen der Anteil $d_r$ des Kohlenstoffs abgezogen und zu dem amorphen Volumen addiert. + Da nur ganze Atome "ubertragen werden k"onnen wird der Betrag auf die n"achst kleinere ganze Zahl abgerundet. + Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt. + + Die Sputter-Routine wird nach der Dosis, die einem Abtrag von $3 nm$ enstpricht ausgef"uhrt. + Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben: + \begin{equation} + S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.} + \end{equation} + Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben. + Dies geschieht wie folgt. + Der Inhalt der Eben $i$ wrd auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben. + Die Information der obersten Ebene $i=1$ geht dabei verloren. + Diese entspricht der abgetragenen Ebene. + Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null. + + Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren. + + Die Sputterrate kann durch {\em TRIM} bestimmt werden. + Bei den gegebenen Bedingungen werden ungef"ahr $50 nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen. + \section{Simulierte Tiefenbereiche} + Wie bereits erw"ahnt gibt es zwei verschiedene Versionen des Programms, die verschiedene Tiefenbereiche, im Folgenden Simulationsfenster genannt, simulieren. + + Da in erster Linie der Selbstorganisationsprozess der lamellaren Ausscheidungen an der vorderen Grenzfl"ache der amorphen $SiC_x$-Schicht simuliert werden soll, ist der Tiefenbereich der ersten Version gerade bis zu Beginn der durchgehenden Schicht. + Dies entspricht einer Tiefe von ungef"ahr $300 nm$, und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung. + + Wie in \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden. + Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohlenstofferh"ohung stattfindet. + + Die Zufallszahl $z$, die auf die Tiefen-Koordinate $m$ abgebildet wird, muss der Verteilung $p(z)dz = (sz + s_0)dz$ gen"ugen. + Dabei sind $s$ unnd $s_0$ die linear gen"aherte nukleare Bremskraft beschreibende Simulationsparameter. + Die Transformation wird wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben durchgef"uhrt. + Dasselbe betrifft die Wahl der Tiefen-Koordinate f"ur den Einbau des Kohlenstoffatoms. + Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend wird das linear gen"aherte Implantationsprofil verwendet. + + Da sowohl die Reichweitenverteilung als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist kann Sputtern nicht beachtet werden. + Der Diffusionsprozess ist uneingeschr"ankt "moglich. + + In der zweiten Version wird die gesamte Implantationstiefe simuliert. + Das Simulationsfenster geht von $0-700 nm$. + Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung. + + Die Tiefen-Koordinaten f"ur den Sto"sprozess und die Kohelnstoffinkorporation werden wie in Abschnitt \ref{subsection:a_r_step} beschrieben nach der Verwerfungsmethode entsprechend dem nuklearen Bremskraftprofil und der Reichweitenverteilung gewonnen. + + Da sowohl der nukleare Energieverlust und die Kohlenstoffkonzentration in Ebenen gr"osser $Z$ auf Null abgesunken ist, kann die Sputterroutine ausgef"uhrt werden. + Der Diffusionsprozess ist ebenfalls uneingeschr"ankt m"oglich. + \section{Test der Zufallszahlen} + F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein. + Es gibt viele statistische Tests eine Zahlenfolge auf ihre Verteilung beziehungsweise Zuf"alligkeit zu "uberpr"ufen. + Im Folgenden soll nur kontrolliert werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren. + Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft. + + \begin{figure}[h] + \includegraphics[width=12cm]{random.eps} + \caption{H"aufigkeit ganzzahliger Zufallszahlen unterschiedlicher Wahrscheinlichkeitsverteilungen. F"ur jede Verteilung wurden 10 Millionen Zufallszahlen ausgew"urfelt.} + \label{img:random_distrib} + \end{figure} + Abbildung \ref{img:random_distrib} zeigt die H"aufigkeit von Zufallszahlen zwischen $0$ und $232$, abgerundet auf die naechst kleinere ganze Zahl, f"ur unterschiedliche Wahrscheinlichkeitsverteilungen. + + \section{Ablaufschema}