X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=nlsop%2Fdiplom%2Fsimulation.tex;h=fea62adc2d6f4cbe97a02eb69ef6c28b08e8ed55;hb=d4e19285db06a982b636f6ce6a41b53e15627d30;hp=64e14ada83301c182fdbcbd34c83fe6dd5c1fea0;hpb=bdf175c76871dfa37e4985d7a42272d61ae5efae;p=lectures%2Flatex.git diff --git a/nlsop/diplom/simulation.tex b/nlsop/diplom/simulation.tex index 64e14ad..fea62ad 100644 --- a/nlsop/diplom/simulation.tex +++ b/nlsop/diplom/simulation.tex @@ -1,6 +1,7 @@ \chapter{Simulation} Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangen Modell diskutiert werden. + Die Simulation tr"agt den Namen {\em NLSOP}, was kurz f"ur die Schlagw"orter {\bf N}ano, {\bf L}amelle und {\bf S}elbst{\bf O}ragnisations{\bf P}rozess steht. Ziel der Simulation ist die Verifizierung des Modells anhand der experimentellen Ergebnisse die in Abbildung \ref{img:xtem_img} vorliegen. Die genauen Daten sind: \begin{itemize} @@ -19,6 +20,7 @@ \section{Annahmen der Simulation} \subsection{Unterteilung des Targets} + \label{subsection:unterteilung} Wie in Abbildung \ref{img:sim_gitter} zu sehen ist, wird das Target in W"urfel mit Seitenl"ange $a = 3 nm$ zerlegt. \begin{figure}[h] @@ -32,6 +34,7 @@ Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert. \subsection{Amorphisierung und Rekristallisation} + \label{subsection:a_and_r} Nach dem in Kapitel \ref{chapter:modell} vorgestellten Modell gibt es drei zur Amorphisierung beitragende Mechanismen. Eine lokale Wahrscheinlichkeit f"ur die Aamorphisierung $p_{c \rightarrow a}$ eines beliebigen kristallinen Volumens $\vec{r}$ setzt sich aus den drei Einzelwahrscheinlichkeiten f"ur die @@ -61,27 +64,135 @@ Gleichzeitig ist der Beitrag indirekt proportional zum Abstandsquadrat $(\vec r - \vec{r'})^2$, da der Druck (Druck = Kraft pro Fl"ache) quadratisch mit der Entfernung abf"allt. $p_s$ ist wieder Proportionalit"atskonstante und hat somit die Einheit $[p_s] = m^5$. - Die Rekristallisationswahrscheinlichkeit $p_{a \rightarrow c}$ amorpher Gebiete wird zun"achst vereinfacht als + Die Rekristallisationswahrscheinlichkeit amorpher Gebiete $p_{a \rightarrow c}$ sollte sich genau entgegensetzt zu $p_{c \rightarrow a}$ verhalten und wird deshalb als \begin{equation} - + p_{a \rightarrow c}(\vec r) = 1 - p_{c \rightarrow a}(\vec r) + \label{eq:p_ac_local} \end{equation} angenommen. + Jedoch muss die direkte Nachbarschaft des Volumens ber"ucksichtigt werden. + F"ur die Rekristallisation ist Strukturinformation krsitalliner Nachbarschaft notwendig. + Mit einer zunehmenden Anzahl von amorphen Nachbarn sollte die Rekristallisationswahrscheinlichkeit also sukzessive abnehmen und ganz verschwinden wenn kein einziger kristalliner Nachabr vorhanden ist. + Mit der im Abschnitt \ref{subsection:unterteilung} beschriebenen Unterteilung hat ein Volumen genau sechs Angriffsfl"achen die als Rekristallisationsfront dienen k"onnen. + Damit kann man \eqref{eq:p_ac_local} neu schreiben und man erh"alt: + \begin{equation} + p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direkte \, Nachbarn} \delta (\vec{r'})}{6} \Big) \, \textrm{,} + \label{eq:p_ac_genau} + \end{equation} + mit + \begin{equation} + \delta (\vec r) = \left\{ + \begin{array}{ll} + 1 & \textrm{wenn Gebiet bei $\vec r$ amorph} \\ + 0 & \textrm{sonst} \\ + \end{array} + \right. + \label{eq:dedltafunc} + \end{equation} + + Die Proportionalit"atskonstanten $p_b$, $p_c$ und $p_s$ sind frei w"ahlbare Simulationsparameter. + Es gilt somit einen Satz von Parametern zu finden, der die gr"o"stm"oglichste "Ubereinstimmung von Simulationsergebiss und dem experimentell gefundenen Ergebniss aus Abbildung \ref{img:xtem_img} zeigt. + Durch Variation der gefundenen Parameter k"onnen dann die unterschiedlichen Einfl"usse der verschiedenen Amorphisierungsmechanismen untersucht und der Selbstorganisationsprozess verstanden werden. \subsection{Diffusion} + Weiterhin sieht das Modell die M"oglichkeit der Diffusion von Kohelnstoff aus kristallinen in umliegende amorphe Volumina vor. + Die Diffusion wird durch zwei weitere Parameter beschrieben. + In Zeitintervallen $T_{Diff}$ wird ein Anteil $d_r$ des Kohlenstoffs eines kristallinen Volumens in das benachbarte amorphe Volumen transferiert. + Da von einem konstanten Strahlstrom ausgegangen wird, kann die Zeit $T_{Diff}$ auf eine Anzahl von implantierten Ionen $d_v$ abgebildet werden. + Die Diffusion des Kohlenstoffs von amorphe in kristalline Gebiete wird also durch die zwei Parameter $d_r$ und $d_v$ gesteuert. + Die Parameter sind ebenfalls frei w"ahlbar. + Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen. + \subsection{Sputtern} + Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen. + Auf Grund der Unterteilung des Targets in W"urfel mit Seitenl"ange $3 nm$ muss diese Sputterrate in der Dosis, welche $3 nm$ sputtert, angegeben werden. + Jedesmal, nachdem das Programm diese Dosis durchlaufen hat, wird die Sputter-Routine aufgerufen, welche die oberste Targetebene abtr"agt. + \section{Auswertung von {\em TRIM} Ergebnissen} + Da bereits Programme wie {\em TRIM} die Wechelswirkung der Ionen mit dem Target simulieren und somit ein geeignetes Bremskraft- und Implantationsprofil sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellen, wird auf diese Schritte in der Simulation aus Zeitgr"unden verzichtet. + Stattdessen werden die von {\em TRIM} erzeugten Statistiken verwendet. + Durch die Abbildung von Zufallszahlen auf die so erhaltenen Verteilungen, k"onnen die eigentlichen physikalischen Abl"aufe sehr schnell und einfach behandelt werden. + Im Folgenden wird auf die Ermittlung einiger, f"ur {\em NLSOP} wichtige, Statistiken eingegangen. + \subsection{Implantationsprofil und nukleare Bremskraft} + \begin{figure}[h] + \includegraphics[width=12cm]{2pTRIM180C.eps} + \caption{Von {\em TRIM} ermittelte Reichweitenverteilung und tiefenabh"angige Bremskr"afte f"ur $180 keV$ $C^+ \rightarrow Si$} + \label{img:bk_impl_p} + \end{figure} + Abbildung \ref{img:bk_impl_p} zeigt die von {\em TRIM} ermittelte nukleare und elektronische Bremskraft sowie das Kohlenstoffkonzentrationsprofil f"ur die in dieser Arbeit verwendeten Parameter. + Die gestrichelte Linie markiert das Implantationsmaximum. + Sputtereffekte und Abweichungne auf Grund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden hier allerdings nicht ber"ucksichtigt. + + Die Profile werden von {\em TRIM} selbst in seperate Dateien geschrieben. + Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren. + \subsection{Durchschnittliche Anzahl der St"o"se der Ionen und Energieabgabe} \label{subsection:parse_trim_coll} + Weiterhin legt {\em TRIM} eine Datei Namens {\em COLLISION.TXT} an, in der s"amtliche durch jedes Ion verursachte Sto"skaskaden protokolliert sind. + Zu jedem Sto"s sind Koordinaten und Energie"ubertrag angegeben. + Mit einem zur {\em NLSOP} Suite geh"orendem Programm kann diese Datei ausgewertet werden. + Die Daraus gewonnen Ekenntnisse sollen im Folgenden diskutiert werden. + + \begin{figure}[h] + \includegraphics[width=12cm]{trim_coll.eps} + \caption{Auf das Maximum 1 skalierte tiefenabh"angige Energieabgabe (blau) und Anzahl der Kollisionen (rot)} + \label{img:trim_coll} + \end{figure} + Abbildung \ref{img:trim_coll} zeigt die Energieabgabe und Anzahl der St"o"se von Ionen und Recoils in Abh"angigkeit der Tiefe. + Beide Graphen wurden auf das selbe Maximum skaliert. + Man erkennt, dass diese nahezu identisch sind. + Die durchschnittliche Energieabgabe durch einen Sto"s ist also ungef"ahr konstant und unabh"angig von der Tiefe. + Dies ist der Grund f"ur die Wahl eines konstanten Beitrags der ballistischen Amorphisierung in Abschnitt \ref{subsection:a_and_r}. + Jeder Sto"s "ubertr"agt durchschnittlich einen konstanten Energiebetrag im Falle einer Kollision, und tr"agt somit einen konstanten Anteil zur Amoprhisierungswahrscheinlichkeit bei. + + Desweiteren ist nun die Wahrscheinlichkeit f"ur eine Kollision in einer bestimmten Tiefe bekannt. + Sie entspricht der nuklearen Bremskraft. + + \begin{figure}[h] + \includegraphics[width=12cm]{trim_nel.eps} + \caption{Durch {\em TRIM} berechneter nuklearer Energieverlust f"ur $180 keV$ $C^+ \rightarrow Si$} + \label{img:trim_nel} + \end{figure} + Zum Vergleich zeigt Abbildung \ref{img:trim_nel} die von {\em TRIM} selbst berechnete nukleare Bremskraft. + Wie zu erwarten entspricht sie ungef"ahr dem Verlauf der in Abbildung \ref{img:trim_coll} gezeigten Energieabgab. + Der Unterschied liegt daran, dass letzteres Profil durch eine gr"ossere Anzahl von {\em TRIM}-Simulationsschritten ermittelt wurde. + Dieses Profil wird f"ur {\em NLSOP} benutzt. + + Ein implantiertes Ion und dadurch entstandene Recoils verursachen jedoch mehr als nur eine Kollision mit den Targetatomen bis es zur Ruhe kommt. + Nach dem Auswertungsprogramm hat ein Ion durchschnittlich eine Anzahl von $1088$ Kollisionen bei den gegebenen Bedingungen zur Folge. + Die Zahl der getroffenen W"urfel, also Volumina in denen ein Ion mindestens eine Kollision verursacht, ist sehr viel geringer. + Das Auswertungsprogramm z"ahlt durchschnittlich $75$ getroffene Volumina pro implantierten Ion. + Genauer gesagt z"ahlt das Programm die Anzahl der Ebenen mit $3 nm$ H"ohe in denen Kollisionen verursacht werden. + Teilchenbahnen die parallel zur Targetoberfl"ache verf"alschen diese Zahl also. + Ausserdem werden mehrmalige Durchl"aufe der Ebenen nicht mitgez"ahlt. + Man sollte weiterhin beachten, dass Volumina in denen selbst nur eine Kollision stattfindet mitgez"ahlt werden, was allerdings nur sehr unwahrscheinlich zur Amorphisierung f"uhren wird. + Daher wird eine Trefferzahl von $h=100$ f"ur die Simulation angenommen. + \section{Simulationsalgorithmus} + Die Simulation kann in drei Abschnitte geliedert werden. + Die beschriebenen Prozeduren werden sequentiell abgearbeitet und beliebig oft durchlaufen. + + Wenn pro Durchlauf die Anzahl der simulierten Sto"skaskaden gleich der Anzahl der getroffenen Volumina ist, so entspricht ein Durchlauf genau einem implantierten Ion. + Im Folgenden sei die Anzahl der W"urfel in $x$ und $y$ Richtung $X$ und $Y$. + Eine Anzahl von $N$ Durchl"aufen ist damit "aquivalent zur Dosis $D$, die wie folgt gegeben ist: + \begin{equation} + D = \frac{N}{XY(3 nm)^2} \, \textrm{.} + \end{equation} + \subsection{Amorphisierung und Rekristallisation} + Im ersten Schritt sollen die Kollisionen und die daraus resultierende Amorphisierung beziehungsweise Rekristallisation simuliert werden. + Zun"achst muss das gestossene Volumen ausgew"ahlt werden. + Dazu wird mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} eine Zufallszahl $z$ entsprechend der nuklearen Bremskraft ausgew"urfelt. + Die + \subsection{Einbau des implantierten Kohlenstoffs ins Target} \subsection{Diffusion und Sputtern}