X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=f8361e867081cb0b6b6e2d4efc95990e239f1807;hb=437d458c00fa2ee5b6d18a0fa5b450fe5a04d563;hp=f1f0ae33169489ae2832a8f050395e120a9a8f6e;hpb=4069f849b1973e2eb9020fa2e190f93b56537c60;p=lectures%2Flatex.git diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index f1f0ae3..f8361e8 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -19,6 +19,7 @@ A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+ \end{itemize} The elements $\vec{v}\in V$ are called vectors. \end{definition} + \begin{remark} Due to the additive abelian group, the following properties are additionally valid: \begin{itemize} @@ -68,10 +69,14 @@ $(\cdot,\cdot):V\times V \rightarrow K$, which satisfies (positive definite) \end{itemize} for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. -Taking the complex conjugate $(\cdot)^*$ is the map from $K\ni z=a+bi\mapsto a-bi=z^*\in K$. +Taking the complex conjugate $(\cdot)^*$ is the map from +\begin{equation} +z=a+bi\mapsto z^*=a-bi \text{, } z,z^*\in K \text{.} +\end{equation} \end{definition} \begin{remark} +\label{math_app:ip_remark} Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. \begin{equation} (\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= @@ -81,13 +86,14 @@ Due to conjugate symmetry, linearity in the first argument results in conjugate This is called a sesquilinear form. If $K=\mathbb{R}$, conjugate symmetry reduces to symmetry and the sesquilinear form gets a bilinear form. -The inner product $(\cdot,\cdot)$ provides a mapping +Furtermore, the inner product $(\cdot,\cdot)$ provides a mapping \begin{equation} V\rightarrow V^{\dagger}:\vec{v}\mapsto \varphi_{\vec{v}} \quad \text{ defined by } \quad \varphi_{\vec{v}}(\vec{u})=(\vec{v},\vec{u}) \text{ .} +\label{eq:ip_mapping} \end{equation} Since the inner product is linear in the first argument, the same is true for the defined mapping. \begin{equation} @@ -99,30 +105,51 @@ If the inner product is nondegenerate, i.e.\ $\forall\vec{u}\, (\vec{v},\vec{u} Since the dimension of $V$ and $V^{\dagger}$ is equal, it is additionally surjective. Then, $V$ is isomorphic to $V^{\dagger}$. Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be the dual vector of $\vec{v}\in V$. +The dual pairing $[\vec{v}^{\dagger},\vec{u}]=[\varphi_{\vec{v}},\vec{u}]=\varphi_{\vec{v}}(\vec{u})$ is associated with the inner product $(\vec{v},\vec{u})$. + +Now, in physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +In this case, the antilinearity property is assigned to the element $\varphi_{\vec{v}}=\vec{v}^{\dagger}$ of dual space +\begin{equation} +\varphi_{\lambda\vec{v}}(\vec{u})= +(\lambda\vec{v},\vec{u})= +\lambda^*(\vec{v},\vec{u})= +\lambda^*\varphi_{\vec{v}}(\vec{u}) +\end{equation} +and $V$ is found to be isomorphic to the conjugate complex of its dual space. +Then, the inner product $(\vec{v},\vec{u})$ is associated with the dual pairing of element $\vec{u}$ of the vector space and $\vec{v}^{\dagger}$ of its conjugate complex dual space +\begin{equation} +(\vec{v},\vec{u})\rightarrow +[\varphi_{\vec{v}},\vec{u}]= +[\vec{v}^{\dagger},\vec{u}] +\text{ .} +\end{equation} -In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. -This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$ +The standard sesquilinear form $\langle\cdot,\cdot\rangle$, also called Hermitian form, on $\mathbb{C}^n$ and linearity in the second argument, is given by \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} -\text{ CHECK ! ! !} +\langle\vec{v},\vec{u}\rangle=\sum_i^nv_i^*u_i +\text{ .} \end{equation} -or the conjugate transpose in matrix formalism +In this case, in matrix formalism, the inner product is reformulated \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +(\vec{v},\vec{u}) \rightarrow \vec{v}^{\dagger}\vec{u} +\text{ ,} \end{equation} -In doing so, the conjugate transpose is associated with the dual vector. +where the dual vector is associated with the conjugate transpose $\vec{v}^{\dagger}$ of the corresponding vector $\vec{v}$ +and the usual rules of matrix multiplication. \end{remark} \begin{definition}[Outer product] -If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, -the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$, +If $\vec{u}\in U$, $\vec{v},\vec{w}\in V$ are vectors within the respective vector spaces and $\varphi_{\vec{v}}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$ determined in some way from $\vec{v}$ (e.g.\ as in \eqref{eq:ip_mapping}), +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\varphi_{\vec{v}}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} -\vec{v}\mapsto\vec{\varphi}(\vec{v})\vec{u} +\vec{w}\mapsto\varphi_{\vec{v}}(\vec{w})\vec{u} \text{ ,} \end{equation} -where $\vec{\varphi}(\vec{v})$ denotes the linear functional $\vec{\varphi}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +where $\varphi_{\vec{v}}(\vec{w})$ denotes the linear functional $\varphi_{\vec{v}}\in V^{\dagger}$ on $V$ when evaluated at some $\vec{w}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +\end{definition} +\begin{remark} In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, the outer product can be written as matrix $A$ as @@ -137,8 +164,7 @@ u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \right) \text{ .} \end{equation} -\end{definition} -\begin{remark} + The matrix can be equivalently obtained by matrix multiplication: \begin{equation} \vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,}